Texas Instruments Home Computer Q@

Quick Guide to TI BASIC

ABS (page 118)
ASC (page 126)
ATN (page 118)

BREAK (page 58)
BYE (page 52)

CALL CHAR (page 104)
CALL CLEAR (page 100)
CALL COLOR (page 101)
CALL GCHAR (page 114)
CALL HCHAR (page 108)
CALL JOYST (page 116)
CALL KEY (page 115)
CALL SCREEN (page 103)
CALL SOUND (page 112)
CALL VCHAR (page 111)
CHAR (page 104)

CHRS (page 126)

CLEAR (page 100)
CLOSE (page 149)
COLOR (page 101)
CONTINUE (page 63)
COS (page 119)

DATA (page 91)
DEF (page 131)
DELETE (page 71)
DIM (page 136)
DISPLAY (page 98)

EDIT (page 66)
END (page 75)

EOF (page 156)
EXP (page 119)

FOR-TO-STEP (page 81)

GCHAR (page 114)
GOSUB (page 140)
GOTO (page 77)

HCHAR (page 108)

IF-THEN-ELSE (page 79)
INPUT-with files (page 151)
INPUT-with keyboard (page 86)
INT (page 120)

JOYST (page 116)
KEY (page 115)

LEN (page 127)
LET (page 73)

LIST (page 49)
LOG (page 120)

NEW (page 48)
NEXT (page 84)
NUMBER (page 53)

OLD (page 70)
ON-GOSUB (page 143)
ON-GOTO (page 78)
OPEN (page 145)
OPTION BASE (page 138)

POS (page 127)
PRINT-with files (page 157)
PRINT -with screen (page 93)

RANDOMIZE (page 121)
READ (page 89)

REM (page 74)

RESEQUENCE (page 56)
RESTORE -with files (page 162)
RESTORE-with DATA (page 92)
RETURN (page 142)

RND (page 122)

RUN (page 51)

SAVE (page 68)
SCREEN (page 103)
SEGS (page 128)
SGN (page 123)

SIN (page 123)
SOUND (page 112)
SQR (page 124)
STOP (page 76)
STRS (page 129)

TAB (page 96)
TAN (page 124)
TRACE (page 64)

UNBREAK (page 61)
UNTRACE (page 65)

VAL (page 129)
VCHAR (page 111)

IMPORTANT

Record the serial numbers and purchase dates of the T] Home Computer and
Color Monitor in the space below. The serial number is identified by the
words "SERIAL NO.” on the units. Always reference this information in any

Purchase Date

correspondence.
T1 Home Computer
Model No. Serial No.
TI1 Color Monitor
Serial No.

Purchase Date

Copyright - 1979. Texas Instruments Incorporated

TEXAS INSTRUMENTS HOME GOMPUTER [
g
-

1. B-449]

User’s

Reference
Guide

A complete, detailed guide to using
and enjoying your Texas Instruments Home Computer.

WARNING
THIS EQUIPMENT HAS BEEN CERTIFIED TO COMPLY WITH THE
LIMITS FOR A CLASS B COMPUTING DEVICE, PURSUANT TO
SUBPART J OF PART 15 OF FCC RULES. ONLY PERIPHERALS
(COMPUTER INPUT/OUTPUT DEVICES, TERMINALS,
PRINTERS, ETC.) CERTIFIED TO COMPLY WITH THE CLASS B
LIMITS MAY BE ATTACHED TO THIS COMPUTER. OPERATION
WITH NON-CERTIFIED PERIPHERALS IS LIKELY TO RESULT IN
INTERFERENCE TO RADIO AND TV RECEPTION. 1040003.1

(USE WITH 1015963-1)

See important warranty information at back of book.

This book was developed by:
The Staff of the
Texas Instruments Learning Center

and

The Staff of the
Texas Instruments Personal

Computer Division

Artwork and layout

were coordinated and executed by:

Schenck, Plunk & Deason

ISBN# 0-89512-029-1
Library of Congress Catalog #79-65511
Copyright © 1979 by Texas Instruments Incorporated

User's Redorencs Guide

Table of Contents

. GENERAL INFORMATION

Introduction 7
Powerful Built-In Features. 7
TLBASIC . 7
Equation Calculator 7
Convenient Module System 7
Using This Book 7
Placementand Care. 8
A Tour of Your Computer 8
Getting Started 8
ATourof the Keyboard 10
Alphabet Keys. 10

Number Keys. 10
Punctuation Keys 10

Special FunctionKeys 10

Mathor Operation Keys 12

Space Bar 12

Other Symbols. 12
Correcting Errors. 13
ACCESSOTIBS. 13
Solid State Software™ Command Modules 13
Cassette Interface Cable 14
ToSave/Load Data 16

To Save/Load in TIBASIC 16

To Save Data When UsingaModule 16

To Load Data When UsingaModule. 18

Other ACCESSOTIeS. o i e e 19
Using the Built-In Programs 19
TIBASIC . . e 19
Equation Calculator. 19

Il. EQUATION CALCULATOR

Selecting the Equation Calculator 20
Display Format 20
Special Key Functions. 20
Using the Calculator 21
Simple Calculations i 21
Positive and Negative Numbers., 22

Order of Operations.ttt e 22

More Advanced Calculations. 0. i 23
Built-In FuncCtions. e 26
Scientific Notation. e 27
EXPONEntSot 27

ROOUS . . oottt 27
Trigonometric Functions. L. 27
Calculation Overflowor Underflow. 28
Editing.o 28
Print SEParatorsottt 28
Special Features. i 28

User's Reference Guide 3

Table of Contents

KeyWords RPN 28

Error Messagesand Tonesttt 28

lil. BASIC REFERENCE SECTION

Introduction e 30
How This Section Is Organized. i, 31
Notational Conventionsottt e et 31
Examples e 31
General Information. e 32
Introduction. 32
Special Keys. e 33
Blank Spaces 35
Line Numbers. e 36
Numeric Constants. 37
String ConStants.ttt 38
Variables 39
Numeric EXpressions. 40
Relational Expressions. 42
String ExXpressions. 43
Reserved Words 44
Statements Used as Commands 45
Commands Used as Statements i 46
Commands e 47
Introduction. e 47
NEW . 48
LIS T o e 49
RUN . 51
BY E . . 52
NUMBER. . .. 53
RESEQUENCE 56
BRE AK . . 58
UNBRE AK . . 61
CONTINUE . . . i, 63
TRACE . . . 64
UNT RACE. . . . 65

E D T . . 66
SAVE . . 68
O D .. e e, 70
DELETE . . 71
General Program Statements 72
IntrodUCHION.o ottt e 72
LE T . 73
REM . 74
END . e 75

ST O . .. 76
GOT O . . o g
ON-GOTO . e e e e 78
IF-THEN-ELSE i 79
FOR-TO-STEPo e 81
NEX T . 84

Table of Contents

Input-Output Statements. 85
Introduction. 85
INPUT 86
READ 89
D AT A, 91
RESTORE . . . 92
PRINT 93
DS P LAY . 08

Color Graphicsand Sound ST 99
Introduction. 99
CALL CLEAR . . . 100
CALL COLOR 101
CALL SCREEN . . . 103
CALL CHAR . . e, 104
CALL HCHAR. . . 108
CALL VCHAR . . 111
CALL SOUNND . . . 112
CALL GCHAR . . 114
CALL KEY . . 115
CALL JOY ST . 116

Built-In Numeric Functions. 117
Introduction. 117
AB S 118
AT N 118
O . . 119
E X P 119
IN T 120
LOG . ., 120
RANDOMIZE . . 121
RN DD 122
SGN 123
SIN . 123
SOR. . 124
TAN . 124

Built-In String Functions. 125
IRtrodUCHION. o 125
ASC . 1206
CHER . . 126
LEN 127
PO . 127
SEGS. . . 128
ST RS . . . 129
VAL 129

User-Defined Functions. 130
IntrodUCHION. . . . o o oot 130
DEF . 131

User's Reference Guide

Table of Contents

T
ATTaYS . . . e 134
Introduction. e 134
DI . e 136
OPTION BASE e 138
SUDTOULINESo e 139
Introduction. e e 139
GOSUBB. . .. 140
RETURN . 142
ON-GOSUB e 143
File Processing. e 144
Introduction. e e 144
OPEN 145
CLOSE . . . 149
INPU T e 151
EOF . e 156
PRIN T 157
RESTORE . . . e 162
Appendix to BASIC Reference Section i 163
ASCII Character Codes. e e e 163
Character Sets 164
Pattern-Identifier Conversion Table. 164
Character Codes for Split Keyboard 165
Color Codes. e 166
High-Resolution Color Combinations 166
Musical Tone Frequencies. i 167
Error Listo 168
Accuracy Information. 173
Applications Programs. 174
GloSSaTY . . .o 195
Monitor-Console Connection. 199
Maintenance and Service Information 201
Index. . ..o 204
Warranty 208

6 User's Refarencs Cuida

General Information

WNTRODUCTION

You are about to be introduced to the exciting
new world of the home computer. Until just a
few years ago, the size, price. and complexity of
computers put them beyond the reach of the
mdividual purchaser. Today. the Texas
Instruments Home Computer brings you
remarkable computing power in an aflordable,
compact unit that can be easily set up in your
home or office.

Whether you have years of computer experience

or have never worked with computers before.

the mnovative and flexible features of your

Home Computer offer you a wide varniety of

applications. Within minutes, using the special

built-in features or convenient preprogrammed

modules, you can begin using your computer to

@ manage your personal resources

@ develop projects for home and business

B bring new dimensions to education — for you
and your children

@ provide engaging new types of entertainment
for the entire family

8 and much, much more.

Powerful Bullt-in Feahwes

Your Texas Instruments Home Computer is
designed with two powerful features built nght
in. They are:

TI BASIC

This feature makes your T1 Home Computer a
“true” computer — not a video game or
electronic toy. Using a simple but very powerful
computer language. T1 BASIC, you can develop
and use your own computer programs for
applications ranging from color graphics to
statistical analysis and more.

EQUATION CALCULATOR

This innovative feature gives you versatile
computing power in an easy-to-use video
calculator form. You can use the Equation
Calculator for problems ranging from
straightforward addition and subtraction to
evaluating more complex formulas and
equations.

Convenient Module System

The unique system of easy-to-use, snap-in So/id
State Software™ Command Modules® assures the
continued versatility and usefulness of your
computer. These rugged. all solid state modules
are completely preprogrammed for you. You just
snap them in, and they “prompt” you through
activities, applications, games, entertainment,
etc. With a module plugged mto the computer
console, you can start using your computer
immediately. You can choose from a wide
selection of Cammand Module titles. Ask your
dealer to see all of them!

USING THIS BOOK

This User’s Reference Guide is one of the three
books packed with your computer. It tells you
everything you need to know to fully enjoy all
the features and functions of your computer.
The Read T hss First booklet included with the
computer covers first things first: what is
packed with your computer. initial set-up.
getting started using the Command Module
software. The Beginner’s BASIC book that is
abomcluded:saself-pacedandveryenjoyable
short course in BASIC programming.

This User's Reference Guide is organized in a

step-by-step fashion:

B a bnief discussion of the placement and care of
your new computer

B a tour of your computer. starting with the
connector outlets and including the computer
keyboard

@ the use of the accessones available for the
computer

B sections on the EQUATION CALCULATOR
and TI BASIC

A final note before we begin. You don't need a
technical background to fully enjoy and utilize
your Home Computer. No special expertise or
experience is necessary. | he simple instructions
we'll provide here and in the books provided
with each module, as well as the prompting
you'll receive from the computer. are all youll
need to get “up and running” quickly.

*sold separately

User'’s Rofevease Guide

General Information

I

PLACEMENT AND CARE

With the proper care, your Texas Instruments
Home Computer will provide you with many
years of enriching experiences. Treat your
computer with the same good care you'd give
other electronic products such as a television or
stereo.

It's important that you choose a good location
for your computer system. Select a place for the
system where sunlight or bright light doesn't fall
directly on the screen. DO NOT SET THE
COMPUTER CONSOLE ON THE TOP OF
A TELEVISION SET.

Correct ventilation is necessary for the
continued proper operation of your computer
system. Be sure air can flow freely through all
the ventilation slots on the bottoms, backs, and
tops of the console and the monitor. Do not
obstruct the ventilation or enclose the system in
any way. It's best to place the system on a hard-
topped non-metallic surface such as a table.

From time to time you may want to clean the
surfaces of your computer. First, turn the
computer OFF. Then gently wipe the surface
using a damp, lint-free cloth. Do not use
solvents or other cleansers to clean the
computer console.

CAUTION: Electronic equipment can be
damaged by static electricity discharges. Static
electricity build-ups can be caused by walking
across a carpet. If you build up a static charge
and then touch the computer, a Command
Module, or any accessory device, you can
permanently damage the internal circuits.
Always touch a metal object (such as a door
knob, a desk lamp, etc.) before working with
your computer, connecting accessory devices,
handling a Command Module, inserting a
Command Module, etc. You may want to
purchase a special anti-static spray for use on
the carpeting in the room where your computer
is located. This commercial preparation is
usually available from local carpet, hardware,
and office supply stores.

A TOUR OF YOUR COMPUTER

Your computer console is the central part of
your computer system. It's designed so that all
of the other units of the system easily connect to
this console. No tools are required. Let’s-
become more familiar with the console by
identifying the various outlets, and then tour the
keyboard.

Getting Started

Let's look at the front and right side of your
computer.

1 This is the ON/OFF switch. The small light
next to the switch indicates when the
computer is ON.

2 This outlet provides for the connection of
earphones or a headset.*

3 Command Module software* snaps into this
outlet. (See pages 13-14 for more details.)

4 This keyboard is used to type information
into the computer.

5 This outlet is for optional peripheral
accessories. Details are included with the
appropriate peripheral.

*sold separately

User's Refarence Guide

—
as—

€ The Cassette Interface Cable* connects to
the console at this 9-pin "D outlet. (See pages
14-16 for more details.)

7 The Power Cord attaches to the console at

this 4-pin outlet. (See Read This Firstor
page 200 of this book for complete details.)

8 This S-pin connector (also called a DIN
connector) is for audio-out and video-out.
This connector will insert easily when
properly aligned. (See Read This First or
page 199 of this book for complete details.)

9 The Wired Remote Controllers connect to
this 9-pin outlet. Details are included with
the accessory.

(Note: Do not confuse this 9-pin outlet with
the 9-pin outlet on the back of the console.
They are not interchangeable.)

“sold separately

Turn on the computer following the directions in
Read T his First. Youll first see the master title
screen.

s

TEXAS INSTRUMENTS

HOME COMPUTER

READY-PRESS ANY KEY TO BEGIN

€1979 TEXAS INSTRUMENTS

Next. press any key on the keyboard. Youll see
a screen called the master selection list.

2 FOR EQUATION CALCULATOR

Let’s press 1 for TI BASIC. and try out some of
the keys as we go along.

The small flashing symbol you see in the lower
left corner of the screen is called the cursor.
This symbol shows you exactly where the next
character (letter. number. punctuation. etc.) wall
appear on the screen when you press a key.

(Note: If you should accidentally leave your
computer on for a long period of time. the
screen will automatically go blank after about
ten minutes of non-use. Press any key to bring

the display back again.)

User's Reference Guide

General Information

——]

A Tour of the Keyboard
Let's take a close look at the keyboard.

AIHIBEHIHIRHIEEn
Lo L] Le] L) [F G B [
] Lo sG] Do Lo D [T 18]] [2]
o G G Te o] Co] LR] 2] [owe]
| |

The keyboard is quite similar to that of a
standard typewriter, with keys of several types.
Some have special uses, while others perform
simple, straightforward functions. We'll discuss
each group of keys separately.

ALPHABET KEYS

All alphabetical symbols are typed into the
computer using the alphabet keys. You don’t
have to be concerned about capitalizing any
letters because the computer uses only upper
case (or capital) letters.

NUMBER KEYS

The number keys are located on the top row of
your computer keyboard.

NHIHIHIHIBIEIHNE
1 2 3 a 5 8 7 B 9 1]

These keys are used to type numbers into your
computer. If you have previous typing
experience, you need to be aware of two
differences between this keyboard and some
typewriter keyboards. With this computer, you
cannot type the letter "L” as the number “1.”
Also, never substitute the letter "O” for a zero.
The computer screen displays the letter "O”
with squared corners and displays a zero with

rounded corners, so you'll be able to distinguish
them.

PUNCTUATION KEYS
The following keys are used for punctuation:

' HHEE: EEENR
HEEEEEEEEREN
EEEEEEEEERN
1 1 1 1 IHIABEAE
]

All punctuation keys (except the period) require
that the SHIFT key be pressed and held while the
punctuation key is pressed. For example, to
display a question mark, simply hold down the
SHIFT key and press ?. We'll indicate the use of
the SHIFT key as follows: SHIFT ?.

SPECIAL FUNCTION KEYS

Several keys have varying functions in T1
BASIC, the Equation Calculator, some
Command Module software and other
applications. The exact use of the keys is
described in detail in the appropriate sections of
this Guide or in the manuals that accompany the

various modules. Let's become familiar with
these keys.

10

General information

oerY @ (QUIT)

Pressing SMPT Q (at any time) returns the
computer to the Master Title Screen. Note:
When you press SW#Y Q all data or program
matenial you have entered will be erased.

suven (FWD)

In most cases, when you press the orange ENTER
key, you tell the computer to accept the
mformation you have just finished typing.
Additional functions will be explained in the
appropriate manuals.

st (=] (LEFT)

Pressing the left-arrow key (backspace) moves
the cursor one space to the left each time it is
pressed. The cursor does not erase or change

the characters on the screen as it passes over
them.

sierFt (=] (RIGHT)

Pressing the right-arrow key (forwardspace)
moves the cursor one space to the right each
time it is pressed. As the cursor passes over the
characters printed on the screen, it does not
alter them in any way.

sttFT F (DEL)

The delete key is used to delete a letter,
number, or other character from the line you
have just typed (before you press ENTER).

sHIFT G (INS)

The insert key is used to insert a letter, number,
or other character into the information you have
just typed (before pressing ENTER).

sirT (1] (UP)
st (1] (DOWN)

These keys have various functions according to
the specific application where they are used.
See the sections on TI BASIC and the Equation
Calculator (pages 21, 33 and 66 in this book)
and the appropriate module manuals for a
complete explanation of their use.

sHiFT C (CLEAR)

This key is normally used to clear from the
screen any information you have typed (before
pressing ENTER). It also has additional functions
in TI BASIC. See page 34 of this book for
details of its use in TI BASIC.

SHIFT T (ERASE)

This key also is used to clear the line you are
presently typing (before you press ENTER). See
page 34 of this book for an explanation of its
function in TI BASIC.

Other keys have special functions in the various
modules. Some of these are:

SHIFT W (BEGIN)
SHIFT R (REDO)
SHIFT A (AID)
SHIFT Z (BACK)
SHIFT V(CMD)

Keyboard Overlay

A plastic keyboard overlay is included with your
computer. You can use this overlay to help you

more easily identify the functions of certain keys
that are used in combination with the SHIFT key.

1

=] = $ % ' & = [1
2 3 a4 5 6

~
-}
w
[=]

QUIT BEGIN UP REDO ERASE
Lo] Lo Le] Lo L) G L) o] [F]

AID LEFT RIGHT DEL INS

] Lo 5] G L] Le]

BACK DOWN CLEAR CMD FWD

IA
o>
x ~

! ?

: : ;
ShF z X c v B N M . ENTER

The overlay reminds you that you can press
SHIFT A for "AID,” sSHIFT Q for "QUIT,” etc. The
function of the SHIFT V key (labelled “"CMD”) is
defined in the modules or applications where
this key is used.

User's Refereace Guide

11

General Information

|

MATH OR OPERATION KEYS

The Math keys (or operation keys) are the keys
used to instruct the computer to add, subtract,
multiply, divide, and raise a number to a power.

‘ ‘ B
) e P B I

IEECES
EEEEECECLE

The symbols for addition, subtraction, and
equals are the usual ones you're familiar with,
but the multiplication and division symbols may
be new to you.

+ Addition

— Subtraction
* Multiplication
/ Division

= Equals

The “caret” key (A) is also used for
mathematical operations:

SHIFT A

This symbol tells the computer to perform
exponentiation (raising a number to a power).
Since 5° cannot be easily printed on your
screen, the computer interprets 5 /A 3 to mean
that three is an exponent.

The following keys are used to indicate
mathematical relationships in TI BASIC:

SHIFT > "“Greater than”; this symbol is
used to compare two quantities.

SHIFT < "Less than”; this symbol is also
used to compare two quantities.

Notice that you must press the SHIFT key and
then the operation key to type in any of these
symbols. (You can perform arithmetic in both T1
BASIC and the Equation Calculator.
Mathematical operations and examples are
discussed in the appropriate sections of this
book.)

SPACE BAR

The SPACE BAR is the long blank bar at the
bottom of the keyboard. It operates just like the
space bar on a regular typewriter. When you
press the SPACE BAR, the computer leaves a
blank space between words, letters or numbers.

The SPACE BAR can also be used to erase
characters already on the screen. (See the
section titled "Correcting Errors” on page 13.)

The 8PACE key has the same functions as the
SPACE BAR.

OTHER SYMBOLS

This keyboard also includes the usual special
symbols of a typewriter keyboard. These
symbols require that you press and hold the
SHIFT key while pressing another key. (Note:
SHIFT cannot be used to underline because it
will erase the original characters.)

12

User's Refareace Guids

General Information

Correcting Errors

If you want to correct a typing error before you
press ENTER. you can do it easily. Move the
cursor back to the character you want to change
(using SHIFT[—=7). Retype the correct character
(or characters); then move the cursor back to
the end of the word or phrase you were typing
(using SMIFT =1).

You can erase errors by using the SPACE BAR.
Backspace (using S$HIFT[=]) to a point where
you want to begin erasing. Then press the
SPACE BAR to move the cursor over the
characters on the screen. The characters are
erased.

In certain applications you can also make
corrections using the SHIFT F (delete) key and
the SHIFT G (insert) key.

ACCESSORIES

Several accessories are available for use with
the computer. These accessories expand the
capabilities of your basic unit and enable you to
derive greater benefit and enjoyment from your
computer. This flexibility to increase the
computer's capability lets you build your system
as you need it. Some of these accessories are
discussed separately below.

Solid State Software® Command Modules

The Texas Instruments Command Module
software system provides you with solid state
modules preprogrammed with activities and
applications that range from home management
to education to entertainment. The modules are
easy to use — they prompt and help you through
the activities. Each module comes with its own
instruction manual that explains how you
interact with the computer in each activity.

Because no special computer skills are required.
these easy-to-use plug-in modules allow you to
begin using your computer immediately. Here's
how you insert a module into the computer:

Note: Before inserting a module into the
computer. be sure that it has not built up a
static charge. See page 8 of this Guide.

1. If the computer 1s OFF, slowly slide the
module into the slot on the console. and turn
the computer on. The master title screen will
appear.

(TTTITTITTT
%

TEXAS INSTRUMENTS

HOME COMPUTER

READY-PRESS ANY KEY TO BEGIN

€1979 TEXAS INSTRUMENTS

If the computer 1s ON, hold down the SHIFT
key and press @ to make the master title
screen appear. T hen slide the module into the
slot on the console.

User's Reference Guide

13

General Information

|

2. F"ress any key to make the master selection
list appear. The title of the module you've
inserted will be third on the list.

3. Press the 3 key to select the module and
begin using it.

When you press key 3. the title screen of the
module shows on the screen. Follow the
directions given on the screens and in the
module instruction manual as you use each
module.

If a module does not appear to be operating
properly. return to the master title screen by
pressing SHIFT Q. Withdraw the module and
reinsert it carefully. Then press any key to
make the master selection list appear. The title
of the module should show up in the third
position. Press 3 to select the module. (Note: In
some instances, it may be necessary to turn the
computer off, wait several seconds. and then
turn it on again.)

To remove the module. first return the computer
to the master title screen by pressing SHIFT Q.
Then remove the module from the slot.

An automatic reset feature is built into the
computer. Anytime a module is inserted

into the console, the computer should

return to the master title screen. (Note: All data
or program material you have entered will be
erased.) In rare instances, if the module is
accidentally removed from the console while the
module contents are being used. the computer
may behave unpredictably. To restore the
computer to normal operation, turn the
computer console off. Wait a few seconds. Then
reinsert the module, and turn the computer on
again.

Additional information concerning use and '
service can be found on page 201 of this Guide.

A wide selection of modules is currently
available and many more are on the way. This
system allows you to expand and increase the
capabilities of your computer as your own needs
and interests change.

Cassette Interface Cable

You can further expand your computer system
by using audio cassette tape recorders. TI
BASIC allows you to store and retrieve data you
enter in the computer (programs, numerical
data, etc.). By recording data on a tape, you can
save it as a permanent record. Later you can
load the data from the cassette tape into the
computer’s memory if you want to use that
information again. Several of the command
modules also use this feature to save and load
data you've used in the module.

You can use either one or two recorders for this
purpose. Using two cassette recorders is
especially helpful for advanced programming
applications.

—

/ (| «~ —
(7]
' B\

14

User’s Reference Guide

General information

e—

Casaette recorders are connected to the Home
Computer by the special cassette interface
cable* acoessory. Many standard cassette
recorders can be used with the Home
Computer. For best operation, however. they
should have such features as:

@ Volume control

@ Tone control

@ Microphone jack

@ Remote jack

@ Earphone or external speaker jack

& Digital tape counter (This will enable you to
easily locate the correct tape position in case
you want to store more than one program or
data set on the same tape.)

Since motor control design varies from
manufacturer to manufacturer. we have tested
several different cassette recorders to determine
whether they can be used with the Home
Computer. A list of recorders that appear to
work well with this computer system is included
separately. We've also indicated the volume
setting and tone control setting for each unit
that give the best operating results.

Texas Instruments can assume no responsibility
for any design changes made by the cassette
recorder manufacturers that might affect the use
of a specific recorder with the Tl Home
Computer.

Note: The cassette interface cable uses the
triple-plug end for cassette number 1 "CS1,” and
the double-plug end for cassette number 2
"CS2.” Cassette unit 1 may be used for both
recording (writing) and reading; cassette unit 2
may be used for writing only.

To connect your cassette player(s) to the Home
Computer, use the cassette interface cable, and

follow these simple steps:

*Sold separately

1. Insert the single plug end of the cable with

the 9-pin "D connector into the 9-pin outlet
on the back of the console (labelled "A™).

i‘// (casselte)
| connection)

2. Attach the triple plug ends into the cassette
recorder(s) as follows:

B Insert the plug with the red wire into the
microphone jack

@ Insert the plug with the black wire into the
remote jack (note that this plug is smaller
than the other two plugs)

B Insert the plug with the white wire into the
earphone jack (or external speaker jack) —
CS1 only.

3. Make sure you notice how the cassettes are
connected when you select either CS1 or CS2
when saving data. When loading data. only

CS1 can be used. See TO SAVE/LOAD
DATA section for more information.

(Note: You will usually elect to connect only one
cassette recorder. The other plug end will
simply be inactive when only one recorder is
used with the computer.)

{Seer’s Reference Guide

15

General Information

After all cables are connected, turn the tone
control on your cassette player to full TREBLE
or to the point indicated on the table on the
separate cassette sheet. Set the volume at about
half scale (if the volume control has ten
positions, set it at five or at the position
indicated in the table). If your cassette player
does not have a tone control, you may have to
set the volume control higher for best results.

TO SAVE/LOAD DATA

If you have your cassette machine(s) connected
to the console as instructed, you are ready to
save/load data.

Before you attempt to save/load your data,

make sure that:

B You are using high quality audio tape. Poor
quality tape yields poor performance.

® The tape is not longer than C-60. Longer
tapes are thinner, and provide less fidelity.

B The cassette machine is not located within
two feet of the monitor or a television set to
minimize magnetic field interference.

B The tape is never placed within two feet of the
monitor, a television set, an electric motor, or
any other strong source of magnetic fields to
avoid accidental erasure of your data.

B The system (computer console, cassette
machine, and Color Monitor) is not located on
a continuous metallic surface to minimize
conducted noise.

B You are using only CS1 for LOAD. CS1 or
CS2 can be used for SAVE.

To Save/Load Data in TI BASIC

For complete instructions on how to save and
load data when you are programming in T1
BASIC, see pages 68-70 of this Guide.

To Save Data When Using a Module

After you have entered your data into the
computer and connected the recorder to the
computer (with a good quality tape cassette in
place), you are ready to begin recording. Select
the "SAVE" option offered by the module you're
using. The computer asks you to press 1 for
CASSETTE or 2 for OTHER DEVICE. Press
1. Next you are asked to press 1 for CS1
(cassette unit 1) or 2 for CS2 (cassette unit 2).
This time, let's press 1 and record the data on
cassette unit CS1. (The instructions are the
same for both CS1 and CS2.)

From this point on, the computer guides you
through the SAVE routine with on-screen
instructions. (The computer controls the
recorder motor power. Therefore. the tape does
not start to move until you press ENTER at the
points indicated.)

Screen Instructions

* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

Procedure

Rewind the tape before you press ENTER. If your
recorder does not have a tape-position counter.
rewind the tape all the way to the beginning. If
your recorder does have a position counter,
position the tape at the spot where you want to
begin recording. and press the “stop” button on
the recorder. (Write down the position for later
reference.) Then press ENTER to continue.

16

User's Reference Guids

General information

e e

* PRESS CASSETTE RECORD CSt
THEN PRESS ENTER

Press the “record” button on the recorder. and
thea press SGNTER on the computer. As soon as
you do. your data will begin recording on the
tape. and the screen will show this message:

* RECORDING

You may hear the sound of the encoded
mformation as it ts being stored or read from the
tape unit. Several seconds of blank tape will be
recorded to allow for the leader on the tape.

* PRESS CASSETTE STOP CS1
THEN PRESS ENTER

When all the data has been recorded, press the
“stop” button on the recorder. and then press the
computer's ENTER key.

Once you've done this. you'll be asked the
following question:
* CHECK TAPE (Y OR N)?

At this point you may choose to let the computer
check your tape to make sure everything was
recorded properly. We strongly recommend that
you do so to ensure the accuracy of your tape for
future use. Note: CS1 only.

If you decide not to check the tape, press N for
no. Remove your tape, and label it for later
reference.

If you want to check the tape. press Y for yes.
Again. the computer guides you with the
following messages:

Screen Instructions

+* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

Procedure

Rewind the tape (before pressing ENTER) to the
point where you began recording your data. If
you stored your data at the beginning of the
lape. simply rewind the tape to the beginning. If.
however. you began at a point other than the
beginning of the tape. rewind the tape to that
sosition. and press the “stop” button on the
-ecorder. Then press BNTER.

* PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

Press the “play” button on the recorder. and
then press ENTER. The computer will compare
the data in its memory to the data on the tape.
While your tape is being checked by the
computer. you'll see this message:

* CHECKING

If there are no errors. the following messages
are displayed on the screen:
* DATA OK

PRESS CASSETTE STOP CS1

THEN PRESS ENTER

You can now remove your data tape and label it
for future use.

If. however, the data were not recorded properly.
you'll receive one of two error messages:

Error Message
* ERROR - NO DATA FOUND
Meaning

Your data was not recorded. or it did not play
back.

PRESS R TO RECORD CS1
PRESS C TO CHECK
PRESS E TO EXIT

Error Message
* ERROR IN DATA DETECTED

Meaning
Some part of your data did not record properly.

PRESS R TO RECORD CS1
PRESS C TO CHECK
PRESS E TO EXIT

Before you go further, you may want to recheck
these items:

B Is the recorder at a proper distance from
your television set (two feet or more)? @ Is the
recorder attached properly to the computer?
(See pages 15-16.) @ Is the cassette tape in good
condition? (If in doubt, try another tape.) @ Are
the cassette recorder volume and tone adjusted
correctly? Was the volume too high or too low?
@ Does the cassette tape head need cleaning?

@ Is the system located on a metal surface?

Jser's Reference Guide

17

General Information

When you have checked these, you can choose
one of these three options:

W Press R to record your data again. using the
same instructions for RECORD that are
discussed above.

B Press C to instruct the computer to check
your data again.

B Press E to "exit” and the following message
appears:

* PRESS CASSETTE STOP CSt1
THEN PRESS ENTER

The “exit” key takes you back to the beginning
of the "Save"” option of the module. Thus, when
you press ENTER, you see the "Save Data”
screen and can try to store your data again. Just
follow the instructions as they appear on the
screen.

To Load Data When Using a Module

The next time you want to use the information
stored on the tape, you'll need to “load” your
data — that is, read the data you saved on tape
into the memory system of the computer * First.
connect your cassette recorder(s) to your
computer (see pages 15-16). Then insert into the
computer the module from which you saved the
information. When you're ready to “load.” select
the “LOAD DATA" option of the module. When
the computer asks, press the 1 key to indicate
the information is being read from a cassette.
Then press the 1 key again to select cassette
unit CS1. Remember CS1 is used for loading
data.

From this point, the computer prints
instructions on the screen for you to follow.

Screen Instructions

* REWIND CASSETTE TAPE CS1
THEN PRESS ENTER

Procedures

Rewind the tape before you press ENTER.
Position your tape at the point from which you
want to read the data into the computer (at the
beginning if your recorder does not have a
position counter). Then press ENTER.

*Due to differences in tape cassette design, a tape
recorded by one model of recorder may not be
readable by another model of recorder.

Screen Instructions

* PRESS CASSETTE PLAY CS1
THEN PRESS ENTER

Procedures

Press the “play” button on the recorder and the
ENTER key on the computer. The information is
read from the tape and entered into the
computer’s memory. While the computer is
reading the tape, the following message appears
on the screen:

* READING

It takes some time to read in the data,
depending on the amount of information stored.
When the computer finishes reading the data. it
tells you whether or not it read the data
properly. If the data was read correctly. you'll
see the following messages on the screen:

* DATA OK
* PRESS CASSETTE STOP CS1
THEN PRESS ENTER

You're now ready to begin working with the
module.

If. however. the data has not been entered
properly into the computer’s memory. you'll see
one of several “error” messages. Follow the
directions on the screen to try to load your data
again.

If you still have difficulty. you'll want to make

sure:

B you are loading the correct tape

& the tape is positioned at the correct starting
place for the data you are loading

B the tape has not been damaged
or accidentally erased

W the recorder is a proper distance from your
television set (two feet or more)

B the recorder is attached properly to the
computer

@ the cassette recorder volume is adjusted
correctly

8 the system is not located on a metal surface

B the tape was recorded with your cassette unit or
an identical model

@ the cassette tape head is clean
8 you are using cassette unit }

18

User s Relerence Guith

General Information

For exact operation details and specific cautions
you should observe with your cassette recorder,
refer to the owner's manual that accompanied
the machine.

Other Accessories

Texas Instruments is engaged in several
exciting programs to provide additional
accessories and peripherals for your Home
Computer. Keep in touch with your dealer to
learn details about these products as they
become available.

USING THE BUILT-IN PROGRAMS

Now that you have some familiarity with the
computer, let's look at the built-in features — T1
BASIC and the Equation Calculator.

Ti BASIC

Learning to program T1 BASIC on your Home
Computer can add a useful and enjoyable
dimension to many aspects of your life. You can
develop programs that range from music and
color graphic creations, to games, to personal
and business records, to complex mathematical
and statistical applications.

TI BASIC is a powerful computer language, yet
it's easy to learn and apply. Whatever your level
of programming experience, we can help you

begin programming quickly.

For those who have no programming
experience, we have included the book
Beginner's BASIC. This book is designed to
lead you into programming. It contains many
examples and lets you learn TI BASIC through
an enjoyable "hands-on" approach.

If you have some programming experience, but
have never programmed with BASIC, you may
want to consult an excellent intermediate level
book by Herbert D. Peckham. This T1/
McGraw-Hill book, Programming BASIC with
the TI Home Computer, can be ordered from
Texas Instruments using the coupon included in
Beginner's BASIC and should also be available

locally.

If you have programmed with BASIC on other
computers, you will probably know most of the
information in Beginner's BASIC. You may want
to scan through the book briefly to acquaint
yourself with TI BASIC. Then proceed to the
"BASIC Reference"” section of this book which
begins on page 30. This section provides you
with a detailed description of TI BASIC. A
series of applications programs are included at
the end of this section to help you gain a good
working knowledge of the computer.

If you have extensive programming experience,
you can immediately start programming on the
Home Computer. TI BASIC is compatible with
the American National Standard for Minimal
BASIC.

Equation Calculator

The second built-in program of the Home
Computer is an Equation Calculator. This
unique calculator is available for a wide variety
of applications. The next section of this book
explains exactly how to use the calculator for
both simple and more advanced calculations.

If you're ready, let's move ahead and get some
hands-on experience using both the Equation
Calculator and TI BASIC.

User’s Reference Guide

19

Equation Calculator

——

The Equation Calculator lets you take
advantage of the computing power of the Home
Computer without entering formal programs.
The versatility and convenience of this feature
can be applied to everyday arithmetic problems
as well as to advanced mathematical operations.

In addition to the capabilities of a high
performance calculator, the Equation Calculator
has a unique "visible memory" display that
shows you the computation in progress. The
data stored in memory, the equation being
solved, and the keystrokes you enter are
displayed in separate sections of the screen. You
can easily see what has been done and change
values whenever necessary.

The best way to learn about the capabilities of
your Equation Calculator and how to use it is to
turn on the computer, select EQUATION
CALCULATOR, and work along as you read
through this section of the book.

SELECTING THE EQUATION CALCULATOR

When you turn on your Home Computer, you'll
see the master title screen. Press any key, and
the master selection list is displayed on your

screen. Press the 2 key to select EQUATION
CALCULATOR.

DISPLAY FORMAT

After you press the 2 key the following screen
appears:

s

EQUATION CALCULATOR

Notice that the EQUATION CALCULATOR
screen is divided into three special-purpose
areas. Let's look at these areas, starting at the
bottom of the screen. The section on the lower
part of the screen is your "work” area. When you
"type” in data, it appears first in this section.
When you are working on simple numeric
calculations, the answers are displayed in this
area.

The middle section of the screen is the
"equation memory” area. This area will be blank
or will display the equation or formula you are
currently solving.

The “variable memory” box at the top of the
screen displays up to ten variables and the
current value you have assigned to each
variable. When you are solving a formula or
equation to find the value of a variable, the
value (or solution) will be labelled and displayed
in this area of the screen. When this area is
filled (with ten variables and their values), the
next variable and its value entered will be
displayed in the "work area” at the bottom of the
screen. (Variables and their use are discussed

in detail in "More Advanced Calculations”

on page 23.)

As we go along and actually work through some
examples you'll see exactly how each section of
the display functions. But before we try some
problems, review “A Tour of the Keyboard™ on
pages 10-12 of this book.

SPECIAL KEY FUNCTIONS
ENTER key

The ENTER key is used to enter variables and to
complete a calculation. For example, to add 2
plus 5:
press 2
then press sHiPY +
then press 8
then press ENTER

20

Uner's Rafarence Cuide

Equation Calculator

After you press BNYER, the results are displayed
on the screen.

orY = (Equals Key)

The 0MPT = key is used only in assigning a
value to a variable. Examples:
INTEREST =650
X=Y+6
VOL =25
A=3

SWIFT 1 1 (UP)

The up-arrow key is used to move an equation,
formula, or other expression from the bottom
line of the "work” area of the screen into the
“equation memory” area of the screen. If an
expression is already showing in the "equation
memory" area, pressing SHIFT [t | replaces that
expression with whatever expression is on the
bottom line of the work area. If the bottom line
is blank, pressing 8HIFT [1] clears the "equation
memory” area. You must press this key before
you press ENTER.

sHiFT (1] (DOWN)

Pressing the down-arrow key brings the
expression in the equation memory area to the
bottom line of the work area. (It also remains
displayed — and stored — in the equation
memory area.) You'll want to bring an
expression down from the memory area when
you are ready to solve (or execute) it. Also you
can bring an expression back to the work area
to edit — or change — it in some way. (We'll
discuss this in more detail later.) You must press
this key before you press ENTER.

sutrT (=] (RIGHT)

The right-arrow (forwardspace) key moves the
cursor (0) to the right without erasing
characters as it passes across them.

ssrY (=] (LEFT)

The left-arrow (backspace) key is used to move
the cursor (O) to the left without erasing the
characters it passes over.

sHiFT ¢ (DEL)

The delete key is used to delete a number,
letter, or other character you've typed on the
bottom line of the work area (before you press
ENTER). Using SHIFT [=], backspace to the
character you want to delete. Press S8HIFT F. The
character is deleted, and any numbers or letters
following the deleted character on the line are
automatically moved one space to the left.

SHIFT G (INS)

The insert key is used to insert a letter, number,
or other character into the information you have
typed on the bottom line of the work area
(before you press ENTER). Backspace (using
SHIFT [~]) to the point where you want to insert
a new character. Press SHIFT G. Then type in
the new character. The new character is
inserted and all the other characters on the line
are moved one space to the right. Any
characters that are shifted off the end of the line
are lost.

SHIFT T (ERASE) or sHIFT ¢ (CLEAR)

If you want to clear the bottom line of the work
area (before you press ENTER), press either
SHIFT T or S8HIFT C.

USING THE CALCULATOR
Simple Calculations

Let's try working a few problems so you can see
exactly how the calculator operates. We'll begin
with some simple calculations. First let's
calculate the problem 5+3+4 and see how it
appears on the display.

® First, press 5
then press SHIFT +
then press 3
then press SHIFT +
then press 4
then press ENTER

(Note that you press ENTER, not SHIFT =)

Notice that the “variable memory” box and the
“equation memory” line are empty. The lower
"work" area looks like this:

S+3+4

12
a

User's Reference Guide

21

Equation Calculator

The answer (12) is printed on the line below
your problem entry. When you press ENTER the
bottom line “"scrolls” up one line. After the
calculator prints the answer, the bottom line
again "scrolls” up one line. The work area
displays up to six (6) lines of input at one time.
When the seventh line is entered at the bottom,
the top line in the work area scrolls off the
screen.

You can type in a calculation or expression that
contains up to 28 characters (one full line).
When you have typed the maximum characters
allowed on the line, you'll hear a "beep.” If you
press ENTER at this point, the entries on the line
are calculated, and the answer is displayed on
the next line. If you have a long calculation —
such as adding up all of your checks for the
month — you'll want to divide the entries and
make a series of calculations. Try entering
several addition or subtraction problems and see
how the lines scroll up on the screen.

POSITIVE AND NEGATIVE NUMBERS

You can enter either positive or negative
numbers in your calculations. For positive
numbers, the plus sign (+) is assumed. You do
not have to type it in, and the Equation
Calculator does not print it on the screen. For
negative numbers, type a minus sign (—) in front
of the number. The calculator also prints a
minus sign before the number for negative
numbers.

ORDER OF OPERATIONS

Thus far we've only experimented with addition
and subtraction problems. At times, however,
you'll want to solve problems that have more
than one operation involved. Consider this

problem:
4+10-6/2#3

You can get several different answers to this
problem according to the order in which the
operations are done. For example,

4+10-6/2+3 44+10~6/2»3
=14-6/2+3 or =44+10-3+3
=8/2s3 =44+10-9
=43 =14-9

=12 =5

Which is correct? Type 4 +10—6/243, press
ENTER. and see what answer the Equation
Calculator gives you. Is the answer “5™? This is
the correct answer. Mathematics has a
requirement that there be only one correct
solution for any computation. To assure this,
there is a commonly accepted order in which
arithmetic operations are performed. Your
computer performs calculations in this order. In
any problems involving mixed calculations —
addition, subtraction, multiplication, and
division — the arithmetic operations are
completed in the following order:
1. Multiplication and division are
performed first.
2. Then addition and subtraction are
performed.

With the Equation Calculator you can enter a
problem directly, from left to right, and the
computer automatically sorts the numbers and
operations and computes them according to the
above rules.

At times you may want to specify the exact
order in which an expression is evaluated. In
these cases, you use the parentheses () keys to
group numbers and operations so that the
problem is solved in the order you indicate. The
computer completes the computations inside the
parentheses first. So the new order of operations
becomes:

1. Operations inside the parentheses
2. Multiplication and division operations
3. Addition and subtraction operations

Let’s look at how the position of the parentheses
alters the answer you get in a problem. Try the
following problem:

58+10/2+32

If we enter the problem just like this, we get an
answer of 218 because:

58+10/2+32

=58+5»32

=58+160

=218

22

User's Reference Guide

Equation Caiculator

e

By adding parentheses in different places. we
get a variety of answers. Try (S8 +10)/2¢32:
(58 +10)/2032
=68/2¢32
=34¢32
=1088

Or try (58 +10/2)#32:
=(58 +5)¢32
=63+32
=2016

Experiment with some problems of your own.
Notice the difference the parentheses make in
computing your problems. (Note: Sometimes
vou'll see parentheses used to imply
multiplication, such as (2+1)(3+2)=15. Your
computer will not perform implied
multiplications. You must type the multiplication
symbol (#) between the parentheses.)

More Advanced Calculations

The Equation Calculator is useful for simple
arithmetic calculations. But it can do so much
more! In this section we'll look at some of the
other ways you can use your calculator.

At times you may want to make several similar
calculations in which you change only one or
two of the numbers. So, instead of typing in the
entire problem each time. you can give a special
English-like name to the number you want to
change. Then you only have to assign a value
(or number) to the special name. This name is
called a “variable.” In other words, its value can
"vary~ from problem to problem.

Let’s consider an example. You are shopping for
furniture. You have located a sofa and a table
that you like. but are trying to decide between
two different chairs. So you decide to compare
the total cost in both cases. The costs are:

sofa: $575

table: $125

chair: $30S

chair: $267

So. TOTAL =575+125+CHAIR

“CHAIR" and "TOTAL" are the names we've
given to the variables in this problem. The
entire expression is called an equation. Let's see
how the Equation Calculator handles this
problem.

First, type the word NEW and press ENTER.
This clears the screen and the memory areas.

Then type in the equation:
TOTAL =575+125+CHAIR

(DO NOT PRESS enter WHEN YOU FINISH
TYPING AN EQUATION)

The equation appears on the bottom line of the
work area. Let's store the equation in the
“equation memory" area since we'll use it more
than once. To move it to the memory area, press
SHIFT [1 |. Immediately, the equation moves from
the bottom line of the work area to the "equation
memory" line. This is how your screen looks:

@ EQUATION CALCULATOR

| TOTAL=575+125+CHAIR

User's Reference Guide

23

Equation Calculator

Now let’s assign the first value to CHAIR. Type
CHAIR =305. You'll see CHAIR =305 on the
bottom line of the work area. Press ENTER.
When you press ENTER, CHAIR =305 moves up
one line in the work area, and it is also stored in
the “variable memory” box. Your screen now
shows:

(@ EQUATION CALCULATOR

CHAIR= 305

| TOTAL=575+125+CHAILR

CHAIR=305

O

To calculate TOTAL when CHAIR =305, press
SHIFT [1] (to bring the equation back to the
work area), and press ENTER. You now see the
answer, TOTAL =1005, in the “variable
memory box:

&

EQUATION CALCULATOR

CHAIR= 305
TOTAL= 1005

I TOTAL=575+125+CHAIR

CHAIR=305
TOTAL=575+125+CHAILR

O

To find TOTAL when CHAIR =267, first type
CHAIR =267

Then, press ENTER.

The value shown for CHAIR in the “variable

memory” box changes to 267 as shown:

{@ EQUATION CALCULATOR

CHAIR= 267
TOTAL= 1005

| TOTAL=575+125+CHAIR

CHAIR=305
TOTAL=575+125+CHAIR
CHAIR=267

O

Next, bring the equation to the work area again
by pressing SHIFT 1], and press ENTER to tell the
Equation Calculator to evaluate it. When you
press ENTER, the computer shows the new value
for TOTAL (967) in the “variable memory” box
at the top of the screen:

&g; EQUATION CALCULATOR

CHAIR= 267
TOTAL= 967

L TOTAL=575+125+CHAIR

CHAIR=305
TOTAL=575+125+4CHAIR
CHAIR=267
TOTAL=575+1254CHAILR

O

You can use almost any letter, group of letters,
or word for a variable name. Several
abbreviations and words cannot be used as
variable names because they are reserved for
special functions in T1 BASIC. (You can use
them as a part of a variable name, however)

24

User s Raforenss Cands

Equation Calculator

Youll find a list of these words on page 44 of the
"BASIC Reference” section of this book. The
vanable name can be up to fifteen characters in
length. You cannot leave spaces between
characters in the name, and the only characters
allowed are letters, numbers, the "at” sign (@),
and the line key (—). If you try to enter a
variable name that's too long, has spaces
between the characters, or is a reserved word,
etc.. you'll hear a tone and see an error message
such as "BAD NAME" or "INCORRECT
STATEMENT.” (See page 168 for a complete list
of error messages.) If you do get an error
message, just type in the name again, correctly.

Let's try another example. You want to fence in
a part of your yard and want to find the distance
around this rectangular area (or the
“perimeter”). You may remember the formula
PERIMETER=2*LENGTH + 2*WIDTH.

First, type NEW and press ENTER to clear all
other entries. Then type in the formula. Let the

LENGTH =60 and the WIDTH =40. Here's
what you do:

Procedure Comments

1. Type This is the formula used
PERIMETER =2+ to find PERIMETER
LENGTH+
2sWIDTH

2. Press sMIFT [1] To store the formula in
the "equation memory”

area

3. Type LENGTH=60 To give the variable
(LENGTH) a value

4. Press ENTER To enter LENGTH =60

S. Type WIDTH=40 To give the variable
(WIDTH) a value

To enter WIDTH =40

To bring the formula (or
equation) back to the

6. Press ENTER
7. Press sswrr (1]

The answer, PERIMETER =200, is displayed
in the variable memory box at the top of the
screen. The entire screen looks like this:

@ EQUATION CALCULATOR

LENGTH= 60
WIDTH= 40
PERIMETER= 200

| PERIMETER=2*LENGTH+2*WIDTH

LENGTH=60
WIDTH=40
PERIMETER=2*LENGTH+2*WIDTH

O

If you want to change the value assigned to one
or both of the variables LENGTH and WIDTH.
simply type in the new values and press ENTER.
Then press SHIFT [1], and press ENTER to get the
new value for the variable PERIMETER. Let’s
look at this procedure once again, letting
LENGTH =25 and WIDTH =20.

Procedure Comments

1. Type LENGTH=25 "25" replaces "60" in the
and variable memory box
press ENTER

2. Type WIDTH=20 "20" replaces "40" in the
and variable memory box
press ENTER

3. Press SHIFT [1] To bring formula to

work area

To tell the calculator to
compute PERIMETER
using the new values

4. Press ENTER

work area
8. Press ENTER To tell the Equation
Calculator to find the
answer
User's Refereace Guide 25

Equation Calculator

—

This is how the screen looks now:

\'{P EQUATION CALCULATOR

LENGTHe 29
WiDTHe 20
PERIMETERs 90

(PERIMETENSZOLENGTHA2#WIDTH

WIDIH®4(Q
PERIMETER=COLENGTH+2AWIDTH
LENGTHEZS

WiIDTH=220
FENIMETERSZ24LENGTH+2*WIDTH

(Notice that the original first line
(LENGTH =60) scrolls off the top of the work
arcy when you enter the seventh line.)

[f you have & long equation. you may need to use
un abbreviation or just a single letter as the
variable name so that it will fit on one line. We
could have written the equation above
(PERIMETER=2«LENGTH +2*WIDTH) as
Pe2el +20W,

You can recall the value of any variable,
whether or not it is still displayed on the screen,
by typing the variable name and pressing ENTSA.

Anytime you ask the calculator to evaluate a
variable that is still undefined (by pressing
ENTER). the computer will display the value as
zero (). For example. if you type X = A +B and
press BNTER, the calculator will display the
value X =() in the variable memory box because
you have not assigned a value to the variables,
A and B. For the same reason, if you type in the
variable INTEREST (without assigning it a
value) and press ENTER, the calculator displays
INTEREST =() in the work area at the bottom
of the screen,

Try entering the following problems._and see
how the computer displays your entries and the
final answer.

1. Find the Miles Per Gallon (MPG). You have
driven 350 miles and put 12.5 gallons of gas
in your car. The equation for this problem is:

MPG =MILES/GALLONS

(Ans: 28)

2. (a) Find the annual rate of interest on a $250
Treasury Bill that is sold for $244.33 and
matures in 90 days. The equation for this
problem is:

R=(1/(P»T))#100 (to get the answer in
%)
where
R =annual rate of interest
I minterest earned in dollars
($250.00—-$244 .33)
P =principal ($24 4 .33)
T =time in years (90/365)
(HINT: The answer should be 9.411451725
or 9.41%.)

(b) Solve the same problem as 2(a). but
change the maturity time to 60 days.

(Ans: 14.12%)

Now that you have solved some equations with
your Equation Calculator, let's explore some of
the additional capabilities of this Home
Computer feature.

Bulit-In Functions

The Equation Calculator can take advantage of

many of the special functions of T1 BASIC.

These special functions include such areas as:
® expressing very large or very small

numbers in scientific notation

exponents and roots

absolute values

trigonometric functions

logarithms and antilogarithms

string functions

and others

20

Users Raference Guide

Fui complete information about all of the
functions, see the "BASIC Reference” section of
this book or pages 127-141 of Beginner's BASIC.
You do not have to follow all of the
programming conventions, however, when you
are working with the Equation Calculator. You
do not have to type "PRINT" or "LET."” Let's
look at exactly how you enter some of theae
operationa in the calculator.

Scentific Notation
To enter 98765432100 in scientific notation,
type:
9.87654E +10
To enter 0.000000000000123 in scientific

notation, type:
1.23E-13

Expanents
Quite often in mathematical calculations, we
must raise some number to a power. The caret

or exponentiation symbol (\) tells the computer
that the number following it is a power.

To enter 83, type
8A3

To enter 259, type
28572

To enter y=x3, type
Y=XA3

Roots

Since many calculations call for finding the
square root of a number, this function is built
into the computer. The letters SQR stand for
“square root of ' and instruct the computer to
find the square root of the number, variable, or
expression within the parentheses following the
letters.

To enter "A =the square root of 4, type:
A=SQR(4)

Other roots musat be computed by using a form
of exponentiation. Computing a root of a

number is the same function as raising the
number to a power which is the reciprocal of the:
root. Therefore, V128 is the same as 1281/4

To enter V138, type:
125A(1/3)

Note that we must use parentheses around the
exponent (1/3).

Trigonametric Functions

The following trigonometric functions are
available in your calculator:

SIN()=Finds the sine of the number or
numeric expresasion enclosed in
parentheaes.

COS()=Finds the cosine of the number
or numeric expreasion enclosed
in parentheses.

TAN()=Finds the tangent of the number
or numeric expreasion enclosed
in parentheaea.

ATN()=Finda the arctangent of the
number or numeric expreasion
enclosed in parentheses.

All trigonometric functions are performed by the
calculator in radiana, rather than degreea.
Therefore, if your data is measured in dogrees,
you'll need to convert the measurement to
radians before using it with the function. To
convert an angle from degreea to radians,
multiply by #/180. To convert from radiana to
degrees, multiply by 180/«

To enter the sine of X, where X is the angle
expreased in radiana, type:
SIN(X)

Other trigonometric functions are entered in the
same manner, using the correct abbreviation.

When using any of these apecial T1 BASIC
functions with the calculator, you follow the
same procedures as you do with simple
calculations or equationa. In other words, you
continue to preas BNTBR, or SMIPY| 1 |, or
OMIPT |) | as described previously.

User's Reference Guide

a7

Equation Calculator

Calculation Overflow or Undertlow

The Equation Calculator feature of your
computer has the same numeric range as TI
BASIC. When an overflow occurs, a warning is
given with the message "NUMBER TOO BIG."
When an underflow occurs, the computer
replaces the value of the number with a zero. No
warning or error message is given. (See page 37
of the "BASIC Reference” section of this book
for a complete discussion of the numeric range
of the computer.)

Editing

Editing the information you have typed into the
calculator or changing (or correcting) the
equation in the "equation memory" area is very
easy. If you want to make a change in the line
you have just typed (before you press ENTER)
simply backspace, using SHIFT[=], to the point
of change. Then

Press SHIFT F to delete a character

Press SHIFT G to insert a character

Then forwardspace, using SHIFT[=], to return to
the place you were before backspacing.

To correct errors simply type over the incorrect
entries. You can erase characters by pressing
the SPACE BAR.

If you want to change or correct the equation in
the “equation memory" area, press SHIFT 1] to
bring the equation to the bottom line of the
work area. Next, correct or change the equation
as explained above. Then press SHIFT [1 [to
place the corrected expression in the "equation
memory" line.

Print Separators

If you desire, you can tell the calculator where

to print the answers that appear in the work
area by using commas, semicolons, colons, or
the TAB function. See "Print Separators” and
“Tab Function” on pages 95-96 of the "BASIC
Reference” section of this book or pages 57-66 of
Beginner's BASIC for a complete discussion of
possible print formats.

Speclal Features
Key Words

There are several words you type to give the
Equation Calculator special instructions. These
words are:

NEW - You type NEW to tell the computer
to clear all previous entries. This
clears the entire screen and all
calculator memories.

BYE - You type BYE to tell the computer to
leave the Equation Calculator and
return to the master title screen.

LET - You may (but need nof) type LET
when assigning a value to a variable
(Example, LET A=35).

PRINT - You may (but need not) type PRINT
to tell the computer to print an
expression (Example, PRINT A=*2).

(Note: All of these are T1 BASIC commands or
statements, and you must press ENTER after
typing them.)

Error Messages and Tones

The computer gives several messages in case of
errors. See the "BASIC Reference” section of
this book for a complete listing of these
messages and their meanings.

At times you'll hear warning tones when you are
working with your calculator. The most
important tone you'll hear is the one indicating
you have typed the last allowed character on the
bottom line of the work area.

The many features of the Equation Calculator
make it a powerful tool that you can use for
many applications. In addition to its usefulness
as a calculator, it can also serve as an
introduction to programming. As you've
discovered, the calculator uses most of the
functions of TI BASIC. The next section of this
book and the separate book Beginner's BASIC
help you move from the powers of the Equation
Calculator into true programming in T1 BASIC.

28

BASIC
Reference
Section

*ser's Reference Guide

BASIC Reference Section

Introduction

This section of your User's Reference Guide provides a complete
explanation of all of the commands and statements that are a
part of the TI BASIC language built right into your home
computer. As mentioned earlier, BASIC is a computer language
designed to be easy for beginners to use, yet powerful enough to
allow you to use your computer for a whole host of applications.
There are three different paths available to help you learn

T1 BASIC.

If you're a beginner — and have never had any experience with
programming — the best place to begin is with the Beginner's
BASIC book included with your home computer. The book is
intended to be an enjoyable, quick, self-paced first experience with
programming in TI BASIC. Once you've become familiar with
BASIC, this reference guide will provide the in-depth, ready
reference to terms and information you'll want at your fingertips as
you enjoy the experience of programming.

If you've had some programming experience — and just want to get
familiar with TI BASIC and how it works on your home computer
— we've provided a series of applications programs at the end of
this manual. These programs start out at a very simple level and
progressively become more complex. Exploring these programs will
illustrate for you the use of many of the statements in TI BASIC.
This reference manual provides in-depth information when you
need it.

For those of you with some programming experience who may not
have programmed in BASIC or who want to “brush up” as you
begin using your home computer, we recommend that you begin
with Herbert Peckham'’s excellent book, Programming BASIC with
the TI Home Computer, which provides a rapid, higher-level
learning experience in BASIC. It is available at most popular
bookstores.

For the knowledgeable — once you've gained proficiency in
programming — this guide will serve as your primary reference on
TI1 BASIC statements and commands, providing those details that
need refreshing from time to time. TI Home Computer BASIC
conforms to the American National Standard for Minimal BASIC.
Additional features in TI BASIC such as color graphics, sound, and
many others are also described in this manual. If you are an
experienced BASIC programmer, you should have little trouble
jumping right into TI BASIC and using it.

30 User's Reference Guids

Basic Reference

e —— pm— —

¥ow This Section is Organized

'_This reference guide is organized with usability as the key goal, and
is divided into the following functional groups.

1. General Information 7. Built-In String Functions
2. Commands 8. User-Defined Functions
3. General Program Statements 9. Arrays

4. laput-Output Statements 10. Subroutines

S. Color Graphics and Sound 11. File Processing

6. Built-In Numeric Functions

A glossary of often-used terms is found in the back of this manual.

Notstional Conventions

At the beginning of the discussion for each T1 BASIC command or
statement, a line appears which shows the general format for
entering the command or statement. Certain notational conventions
have been used in these format lines. These conventions are
discussed here to help you understand how they are used.

{ } = The braces indicate that you have a choice of what to use. You
may use only one of the items given within the braces.

[]- The brackets indicate that the item within is optional. You may
use it if you wish, but it is not required.

. = The ellipsis indicates that the preceding item may be
repeated as many times as you desire.

CAPITAL LETTERS - Words appearing in all capital letters
must be typed exactly as shown if you choose to use that item.

italics — Words appearing in italics are a general description of the
item or items that need to appear there. When words are printed in
italics, you need to enter your own choice in place of the italicized
words when you enter the statement or command.

Exampies

For each statement or command in this manual, program examples
are shown at the right. Each line you must enter is indicated by the
prompt character (>) to the left of the line, just as it would appear
on the screen. For statements which will take up more than one
line on the screen, the prompt character appears only at the
beginning of the statement. Anything which the computer places on
the acreen does not show the prompt character. If a new program is
aseeded, the NEW command is shown in the example. It is best if
you enter the examples into the computer and try them as you read
the explanation. Of course, you are encouraged to enter your own

examples as well.

k)|

General Information

Introduction

Once your computer is set up, it is a simple process to begin using
TI BASIC. When you turn on your computer, the master computer
title screen appears. Press any key on the keyboard to get the
master selection list to be displayed. When the master selection list
appears, press the 1 key to select TI BASIC. The screen is now
blank except for the words "TI BASIC READY" and a prompt
character (=) followed by a flashing cursor (3J). Whenever the
cursor is on the screen, the computer is waiting for you to enter
something. The prompt character marks the beginning of each line
you type.

Each line of the screen can display up to 28 characters. Each
statement or command may be up to four screen lines in length.
When you have completely filled one screen line, the cursor
automatically moves down to the next line as you continue typing.
When you have completely filled four lines, the computer will
accept more characters, but the cursor will remain in the same
position. Each character you enter will replace the last character of
the line.

All of the keys discussed in the Special Keys section may be used in
editing program lines before you press the ENTER key. To change
anything in a program line after you have pressed ENTER, you can
retype the entire program line making the desired corrections as
you type in the line again or you can enter Edit Mode. For
information on using Edit Mode, see page 66. Note that whenever
you do any editing on a program, all open files are closed (see
OPEN statement, page 145), and all variables become undefined.

The remainder of this section gives information which applies to
many commands and statements in TI BASIC.

Examples:

TI BASIC READY

>0

>NEW

>10 A=2
>RUN

#% DONE ##

>PRINT A
2

>20 B=3
>PRINT A
0

32

User's Raference Cutite

Special Keys

Several keys have special functions in TI1 BASIC. These keys are
SNTER — When you press the EMTER key, the computer accepts the

program line you have just finished typing. Remember that you may

use up to four screen lines for each program line before you press
GNTER.

orT @ (QUIT) — When you press the Quit key, the computer
leaves T1 BASIC and returns to the master computer title screen.
When the computer leaves TI BASIC, the program and all data
stored in memory is erased. Note that this key does not close open
files (see OPEN statement. page 145). Thus, it is preferable to use
the BYE command (see page 52) to leave BASIC.

st [1] (UP) — The Up-Arrow key works exactly like the ENTER key,
except in Edit Mode (see page 66).

8T (1] (DOWN) — The Down-Arrow key works exactly like the
ENTER key, except in Edit Mode (see page 66).

8rT [=] (LEFT) — The Left-Arrow (backspace) key moves the
cursor one position to the left every time it is pressed. When the
cursor moves over a character it does not delete or change it in any
way. If the cursor reaches the beginning of the line, pressing the
Left-Arrow key has no effect.

sioFT (=] (RIGHT) — The Right-Arrow (forwardspace) key moves
the cursor one position to the right each time it is pressed. Using
this key allows you to move the cursor over a character without
deleting or changing it in any way. If the cursor reaches the end of
the line (4 screen lines). pressing the Right-Arrow key has no effect.

siIFT G (INS) — The Insert key is used to insert characters in the
middle of a program line. To insert characters, position the cursor
(using SHIFT [=] or SHIFT [=]) over the character immediately to
the right of the place where you wish to insert characters, then
press the Insert key. After you have pressed the Insert key, each
time you press a character, the cursor and every character of the
program line that is not to the left of the cursor is moved one
position to the right. The character corresponding to the key you
pressed is then inserted in the blank position left by the shifting of
the curser and other characters. Note that characters shifted off the
end of the program line are deleted from the line. When you have
finished inserting characters, press any other special key listed

above, except Quit (SHIFT Q).

User's Reference Guide

33

Special Keys

]

SHIFT F (DEL) — The Delete key is used to delete characters from
the program line. To delete characters, position the cursor (using
SHIFT [=] or SHIFT[=]) over the character you wish to delete, then
press the Delete key. When you press the Delete key, the character
under the cursor is deleted and all characters of the program line to
the right of the cursor are moved one position to the left. The

cursor does not move. A blank space is used to fill the position at

the right end of the program line left by the shifting of the characters.

SHIFT C (CLEAR) — the Clear or Break key has two functions,
depending on when you use it.

B When this key is pressed while a program is running, a
breakpoint (see page 58) will be taken at the next program line to
be executed. This key allows you to temporarily stop a program
while it is running. Note that you must continue to hold the Break
key until the program stops running. When you stop running a
program using the Break key, the message "BREAKPOINT AT
line-number” is displayed. The program line designated by the
line-number has not been performed. You can start the program
running again where you stopped by entering the CONTINUE
command (see page 63).

B When the Clear key is pressed while typing in a program line, the
line scrolls up on the screen and is not entered. This key has
additional functions in Edit Mode (see page 67) and in Number
Mode (see page 55).

SHIFT T (ERASE) — the Erase key erases the entire program line
which you are typing. The line is not entered. This key works
differently in Edit Mode (see page 67) and Number Mode (see
page 55).

SPACE BAR — the space bar moves the cursor one position to the
right each time it is pressed. If you move the cursor over a
character using the space bar, that character is replaced by the
space character.

SPACE — the 8PACE key works just like the SPACE BAR.

User's

[y 2V

gliiik Spaces

ln. general, a blank space can occur almost anywhere in a program Examples:
without affecting the execution of the program. However, any extra
blank spaces you put in that are not required will be deleted when
the program line is displayed by the EDIT (see page 66), NUM (see
page 53). or LIST (see page 49) command. There are some places
where blank spaces must not appear, specifically:

(1) within a line number (see page 36)

(2) within a reserved word (see page 44)
(3) within a numeric constant (see page 37)
(4) within a variable name (see page 39)

The following are some examples of incorrect use of blank spaces.
The correct line appears in the column at the right.

(1)1 00 PRINT "HELLO" >100 PRINT “HELLO"

(2) 110 PR INT "HOW ARE YOU?” 2110 PRINT “HOW ARE YOUZ"
120 LET A=100

(3)120LETA=100 >130 LET €0ST=24.95

(4) 130LET CO ST =24.95

All reserved words (see page 44) in a program should be
immediately preceded by and followed by one of the following:
@ a blank space
@ an arithmetic operator (+ —*/A)
B the string operator (&)
M a special character used in a particular statement format
(<=>(,;:#)
8 end of line (ENTER key)

User's Refereace Guide

Line Numbers

Each program is comprised of a sequence of BASIC language
program lines ordered by line number. The line number serves as a
label for the program line. Each line in the program begins with a
line number which must be an integer between 1 and 32767,
inclusive. Leading zeroes may be used but are ignored by the
computer. For example: 033 and 33 will be read as 33. You need
not enter lines in sequential order; they will be automatically placed
that way by the computer.

When you run the program, the program lines are performed in

ascending sequential order until:

(1) a branch instruction is performed (see General Program
Statements, page 72)

(2) an error occurs which causes the program to stop running (see
page 169)

(3) the user interrupts the running of the program with a BREAK
command (see page 58) or by using the Break key (SHIFT C)

(4) a STOP statement (see page 76) or END statement (see page
75) is performed

(S) the statement with the largest line number is performed

If you enter a program line with a line number less than 1 or
greater than 32767, the message "BAD LINE NUMBER" will be
displayed and the line will not be entered into memory.

Examples:

>NEW

>100 A=27.9
>110 B=31.8
>120 PRINT
>130 END

>RUN

A;B

27.9 31.8

*#% DONE ##%

>0 A=2
* BAD LINE
>33000 C=4

* BAD LINE

NUMBER

NUMBER

36

User's Refarense Guite

l!umeric Constants

Numeric constants must be either positive or negative real
aumbers. You may enter numeric constants with any number of
digits. Values are maintained internally in seven radix-100 digits.
This means that numbers will have 13 or 14 decimal digits
depending on the value of the number.

Scientific Notation

Very large or very small numbers are easily handled using scientific
notation. A number in scientific notation is expressed as a base
number (mantissa) times ten raised to some power (exponent).

Number =Mantissa x 1(QFxporent

To enter a number using scientific notation:

First, enter the mantissa (be sure to enter a minus sign first if it's
negative).
Enter the letter "E.”

Enter the power of 10 (if it is negative, enter the minus sign before
you enter the exponent).

The following are some examples of how numbers in scientific
notation are entered.

Number Entered as

3.264 x 10 3.264E4

—908.77 x 10* —08.77E21 or —9.877E22
5691 x10-°® 5.691E -5

-247x10° " -247E-17

Numeric constants are defined in the range of
~9.9999999999999E127 to —1E-128, 0, and 1E-128 to
9.9999999999999E127.

Underflow — I[f an entered or computed number, when rounded, is
greater than —1E-128 and less than 1E-128, then an underflow
occurs. When an underflow occurs, the computer replaces the value
of the number with a zero and the program continues running. No
warning or error is given.

Overflow — If a number is entered or computed whose value when
rounded is greater than 9.9999999999999E127 or less than
~9.9999999999999FE 127, an overflow occurs. When an overflow
occurs, the constant is replaced by the computer's limit, a warning
is given with the message "NUMBER TOO BIG," and the program
continues running. The computer’s limit is

—9.9999999999999E 127 or 9.9999999999999E127 as
appropriate. Note that "**" is printed if the exponent is greater
than 99.

Examples:

>PRINT 1.2
1.2

>PRINT -3
-3

>PRINT O
0

>PRINT 3.264E4
32640

>PRINT -98.77E21
-9.877E+22

>PRINT O
0

>PRINT -9E-130
0

>PRINT 9E-142
0

>PRINT 97€E136

* WARNING:
NUMBER TOO BIG
9.99999E+* %

>PRINT -108E144
* WARNING:

NUMBER TO0O BlG
~9.99999E+*x

User's Reference Guide

String Constants

A string constant is a string of characters (including letters,
numbers, spaces, symbols, etc.) enclosed in quotes. Spaces within
string constants are not ignored and are counted as characters in
the string. All characters on the keyboard that can be displayed
may be used in a string constant. A string constant is limited by the
length of the input line (112 characters or four lines on the screen).

When a PRINT (see page 93) or DISPLAY (see page 98) statement
is performed, the surrounding quote marks are not displayed. If you
wish to have words or phrases within a string printed with
surrounding quote marks, simply enter a pair of adjacent quote
marks (double quotes) on either side of the particular word or
phrase when you type it in.

Examples:

>NEW

>100 PRINT "HI!"
>110 PRINT "THIS IS A STRING
CONSTANT.”
>120 PRINT "ALL CHARACTERS (+
-%/ a,) MAY BE USED."
>130 END
>RUN

HI!

THIS IS A STRING CONSTANT,
ALL CHARACTERS (+-#/ @,) MAY
BE USED.

%x DONE #+

>NEW

>100 PRINT "TO PRINT ""QUOTE
MARKS""™ YOU MUSY USE DOUBLE
QUOTES."

>110 PRINT

>120 PRINT "TOM SAID, ""HI, R
ARY!II"I'

>130 END

>RUN

TO PRINT "QUOTE MARKS" YOU M
UST USE DOUBLE QUOTES.

TOM SAID, "HI, MARY!'"

*% DONE #%

38

In BASIC all variables are given a name. Each variable name may
be one or more characters in length but must begin with a letter, an
at-sign (@). or the line (_). The only characters allowed in a

variable name are letters. numbers, the at-sign (@). and the line (-).

One exception is the dollar-sign (§). The last character in a string
vaniable name must be a dollar-sign ($) and this is the only place in
a variable name that it may be used. Variable names are restricted
w fiftcen characters including the dollar-sign for string variable
names.

Array names follow the same rules as simple variable names. (See
the section on Arrays. page 134 for more information.) In a single
program, the same name cannot be used both as a simple variable
and as an array name, nor can two arrays with different dimensions
bave the same name. For example, Z and Z(3) cannot both be used
as names m the same program. nor can X(3.4) and X(2.1.3).
However, there is no relationship between a numeric variable name
and a string variable name which agree except for the dollar sign
(X and X$ may both be used in the same program).

Numeric Variable Names

Valid: X, A9, ALPHA. BASE__PAY. V(3). T(X.3).
TABLE (X XX7Y/2)
Invahd: X§, X/8, 3Y

String Vanable Names

Valid: S$. YZ2$. NAMES. Q5%(3. X)
Invalid: S$3. X9, 4Z%

If you enter a variable name with more than fifteen characters. the
message "BAD NAME" is displayed and the line is not entered into
memory. Reserved words (see page 44) are not allowed as variable
names, but may be used as part of a variable name. For example,
LIST is not allowed as a variable name but LISTS$ is accepted.

At any instant while a program is running. every variable has a
single value. When a program begins running. the value associated
with each numeric variable is set to zero and the value associated
with each string variable is set to null (a string with a length of zero
characters). When a program is running, values are assigned to
variables when LET statements (see page 73). READ statements
{see page 89). FOR-TO-STEP statements (see page 81). or INPUT
statements (see page 86) are performed. The length of the character
string value associated with a string variable may vary while a
program is running from a length of zero to a limit of 255

- characters.

>110 ABCDEFGHIJKLMNOPQ=3

* BAD NANRE

39

Numeric Expressions

Numeric expressions are constructed from numeric variables,
numeric constants, and function references using arithmetic
operators (+ —*/A\). All functions referenced in an expression must
be either functions supplied in TI BASIC (see sections on Built-In
Functions) or defined by a DEF statement (see page 131). The two
kinds of arithmetic operators (prefix and infix) are discussed below.

The prefix arithmetic operators are plus (+) and minus (—) and are
used to indicate the sign (positive or negative) of constants and
variables. The plus sign indicates the number following the prefix
operator (+) should be multiplied by +1, and the minus sign
indicates the number following the prefix operator (—) should be
multiplied by —1. Note that if no prefix operator is present, it is
treated as if the prefix operator were plus. Some examples of prefix
operators with constants and variables are:

10 -6 +3

+A W

The infix arithmetic operators are used for calculations and include:
addition (+), subtraction (—), multiplication (*), division (/), and
exponentiation (A). An infix operator must appear between each
numeric constant and/or variable in a numeric expression. Note
that multiplication cannot be implied by simply placing variables
side by side or by using parentheses. You must use the
multiplication operator (*).

Infix and prefix operators may be entered side by side within a
numeric expression. The operators are evaluated in the normal
way.

>NEW

>100 A
>110 B
>120 ¢
>130 D=2

6
4
20

>140 PRINT A=B/2
>150 PRINT C-D»3+46

>160 END
>RUN

12

20

% DONE

>PRINT 3+-1
2

>PRINT 2#-3
-6

>PRINT 6/-3
-2

40

O T 4 e o T R e

ia cvaluating aumeric expressions. T1 BASIC uses the standard
rules for mathematical hierarchy. These rules are outlined here.

1. All expressions within parentheses are evaluated first
according to the hierarchical rules.

2. Exponentiation is performed next in order from left
to right.

3. Prefix plus and minus are performed.

4. Multiplications and divisions are then completed.

$. Additions and subtractions are then completed.

Note that 0 A0 is defined to be 1 as in ordinary mathematical
usage.

In the evaluation of a numeric expression if an underflow (see page
37) occurs, the value is simply replaced by zero and the program
continues running. If an overflow (see page 37) occurs in the
evaluation of a numeric expression, the value is replaced by the
computer's limit, a warning condition is indicated by the message
"WARNING: NUMBER TOO BIG," and the program continues
running.

When evaluation of a numeric expression results in division by zero,
the value is replaced by the computer’s limit with the same sign as
the numerator, the message "WARNING: NUMBER TOO BIG" is
displayed, and the program continues running. If the evaluation of
the operation of exponentiation results in zero being raised to a
negative power, the value is replaced by the positive value of the
computer’s limit. the message 'WARNING: NUMBER TOO BIG”
is displayed. and the program continues running. If the evaluation
of the operation of exponentiation results in a negative number
being raised to a non-integral power, the message "BAD VALUE" is

displayed. and the program stops running.

Examples:

>NEW

>100
>110
>120
>130
>140
>150
>160
>170
>RUN
10
5.
-16
8

A=z2
B=3

A*(B+2)
BAA=4

=CAA; (=CIAA
10-B*C/6

PRINT
PRINT
PRINT
PRINT
END

16

*k DONE %

>PRINT 040

1

>NEW

>100
>110
>120
>130
>140
>RUN
0
24

PRINT 1E-200

PRINT 24+1E-139

PRINT 1E171

PRINT (1E60%1E76)/1ES0
END

* WARNING:
NUMBER TOO BIG IN 120
9.99999E+*x*

* WARNING:
NUMBER TOO BIG IN 130
1.E+78 '

*% DONE *x%

>NEW

>100
>110
>120
>130
>RUN

PRINT =-22/0
PRINT 0a=-2
PRINT (-3)A1.2
END

* WARNING:
NUMBER TOO BIG IN 100

-9.

99999 E+xx%

* WARNING:
NUMBER TOO BIG IN 110
9.99999E+%x«

* BAD VALUE IN 120

ﬁ% Reference Guide

-

41

Relational Expressions

—

Relational expressions are normally used in the IF-THEN-ELSE
statement (see page 79) but may be used anywhere numeric
expressions are allowed. When you use relational expressions
within a numeric expression, a numeric value of —1 is given if the

relation is true and a numeric value of 0 is given if the relation is
false.

Relational operations are performed from left to right before string
concatenation and after all arithmetic operations within the
expression are completed. To perform string concatenation before
relational operations and/or to perform relational operations before
arithmetic operations, you must use parentheses. Valid relational
operators are:

8 Equal to (=) B Not equal to (< >)
8@ Less than (<) B Less than or equal to (< =)
B Greater than (>) 8 Greater than or equal to (> =)

An explanation of how string comparisons are performed to give
you a true or false result is given on page 79. Remember that the
result you obtain from the evaluation of a relational operator is
always a number. If you try to use the result as a string. you will get
an error.

Examples:

>NEW

>100
>110
>120
>130
>RUN
-1

A=2<5
B=3<=2
PRINT A;B
END

0

*% DONE =

>NEW

>100
>110
>120
>130
>RUN
0

AS="HI"

B$=" THERE!"

PRINT (ASEBS)="HI!'"
END

«% DONE #»

>120
>RUN
-1

PRINT (ASEBS)>"HI"

s+ DONE ##

>120
>RUN
-4

PRINT (A$>Pp3) 4

2+ DONE o»

>NEW

>100
>110
>120
>130
>RUN
-1

AE2<42]
B=A=0
PRINT A;B
END

0

#% DONE we

2

User s Mafaconas Cuide

String Expressions

String expressions are constructed from string variables, string
constants, and function references using the operation for
concatenation (&). The operation of concatenation allows you to
combine strings together. All functions referenced in a string
expression must be either functions supplied in TI BASIC (see
Built-In String Functions, page 125) or defined by a DEF statement
(see page 131) and must have a string value. If evaluation of a string
expression results in a value which exceeds the maximum string
length of 255 characters, the string is truncated on the right, and
the program continues running. No warning is given.

Examples:

>NEW

>100 AS$="HI"

>110 B$="HELLO THERE!"
>120 C$="HOW ARE YOU?"
>130 MSGS=ASESEGS(BS,6,7)
>140 PRINT MSGS$R" "&CS
>150 END

>RUN

HI THERE! HOW ARE YOU?

*% DONE »w

User's Reference Guide

43

Reserved Words

Reserved words are words that may not be used as variable names
in TI BASIC. Note that only the exact word shown is reserved. You
may use reserved words as part of a variable name (for example,
ALEN and LENGTH are allowed). The following is a complete list
of all reserved words in TI BASIC:

ABS
APPEND
ASC

ATN
BASE
BREAK
BYE
CALL
CHRS$
CLOSE
CON
CONTINUE
COSs
DATA
DEF
DELETE
DIM
DISPLAY
EDIT
ELSE
END
EOF
EXP
FIXED
FOR

GO
GOSUB

GOTO

IF

INPUT

INT
INTERNAL
LEN

LET

LIST

LOG

NEW
NEXT
NUM
NUMBER
OLD

ON

OPEN
OPTION
OUTPUT
PERMANENT
POS

PRINT
RANDOMIZE
READ

REC
RELATIVE
REM

RES

RESEQUENCE
RESTORE
RETURN
RND
RUN
SAVE
SEGS$
SEQUENTIAL
SGN

SIN

SQR
STEP
STOP
STR$
SUB

TAB

TAN
THEN

TO
TRACE
UNBREAK
UNTRACE
UPDATE
VAL
VARIABLE

44

User's Reference Cuide

Statements Used as Commands

Many statements in TI BASIC can be entered as commands with
oo line number. When a statement is entered as a command, it is
executed immediately in the normal way (unless there is an error).
The following statements may be entered as commands. The page
number on which that statement is discussed in this manual is
given in parentheses.

CALL (100-116)
CLOSE (149)
DIMension (136)
DISPLAY (98)

END (75)

LET (assignment) (73)
OPEN (145)

PRINT (93, 157)
RANDOMIZE (121)
REMark (74)

READ (89)
RESTORE (92, 162)
STOP (76)

User's Reference Guide

Commands Used as Statements

Some commands in TI BASIC may be entered as part of a
program. Generally. the commands work the same way when

they are used as a statement. The following commands may be used
in a program. The page number on which that command is
discussed in this manual is given in parentheses.

BREAK (58)
UNBREAK (61)
TRACE (64)
UNTRACE (65)
DELETE (71)

41, - - S

Uner » Referance Guut

Cﬂmands

ntreduciion

Whenever the prompt and flashing cursor (>0) appear at the
bottom of your screen, your computer is in Command (Immediate)
Mode. When your computer is in Command Mode, you may enter
any of the commands discussed in this section. Commands may be
typed in and entered without being preceded by a line number.
When a command is entered, your computer performs the required
task immediately. Many statements may also be entered as
commands. For a complete list of these statements, see page 45.
Some of the commands discussed here may be entered as

statements. If the command may be entered as a statement, it will
be noted in the discussion.

User's Reference Guide

47

NEW

NEW

The NEW command erases the program that is currently stored in
memory. Entering the NEW command cancels the effect of the
BREAK command (see page 58) and the TRACE command (see
page 64). The NEW command also closes any open files (see OPEN
statement, page 145) and releases all space that had been

allocated for special characters. In addition, the NEW command
erases all variable values and the table in which variable names are
stored. After the NEW command is performed, the screen is cleared
and the message “TI BASIC READY" is displayed on the screen.
The prompt and flashing cursor (>0) indicate that you may enter
another command or enter a program line.

Examples:

TI BASIC READY

>0

48

e~ e

LIST | lsne-listl
“device-name’:line-listl

Whea the LIST command is entered, the program lines specified by
the hine-list are displayed. If a device-name is entered, then the
specified program lines are printed on the specified device. Device-
aames for possible future accessory devices will be given in their
respective manuals. If no device-name is entered, the specified lines

are displayed on the screen.

If the LIST command is entered with no line-/ist, then the entire
program is displayed. The program lines are always listed in
ascending order. Note that all unnecessary blank spaces that were
present when you entered the program line were deleted when the
computer accepted the line. Notice that when you list the lines,
unnecessary blank spaces have been deleted.

If the line-list is entered, it may consist of a single number, a single
number preceded by a hyphen (for example: -10), a single number
followed by a hyphen (for example: 10-), or a hyphenated range of
line numbers. If the /ine-list is:

@ A single number — only the program line for the line number
specified is displayed on the screen.

@ A single number preceded by a hyphen — all program lines with

line numbers less than or equal to the line number specified are
displayed.

@ A single number followed by a hyphen — all program lines with
line numbers greater than or equal to the line number specified
are displayed.

@ A hyphenated range of line numbers — all program lines with line
numbers not less than the first line number in the range and not
greater than the second line number are displayed.

Examples:

>NEW

>100 A=279.3
>120 PRINT A;B
>110 B=-456.8
>130 END

>LIST

100 A=279.3
110 B=-456.8
120 PRINT A;B
130 END

>LIST 110
110 B=-456.8

>LIST =110
100 A=279.3
110 B=-456.8

>LIST 120-
120 PRINT A;B
130 END

>LIST 90-120
100 A=279.3
110 B=-456.8
120 PRINT A;B

User's Reference Guide

49

LIST

If there is a program in memory but there are no program lines
within the range specified by the /ine-list, then a program line is
displayed according to the following rules. If the line-list specifies

B Line numbers greater than any in the program — the highest
numbered program line is displayed.

B Line numbers less than any in the program — the lowest
numbered program line is displayed.

® Line numbers between lines in the program — the next higher
numbered line is displayed.

If you enter a LIST command and specify a line number which is
equal to zero or greater than 32767, the message “BAD LINE
NUMBER" is displayed.

If you specify a line number which is not an integer, the message
"INCORRECT STATEMENT" is displayed.

If no program is in memory when you enter a LIST command, the
message "CAN'T DO THAT" is displayed.

When program lines are being displayed after the LIST command
has been entered, you can stop the listing by pressing the Break key
(SHIFT C).

Here is a quick summary of the lines listed when specified in the
Iine-list.

Command Lines Displayed

LIST All program lines

LIST x Program line number x

LIST x-y Program lines between x and y, inclusive
LIST x- Program lines greater than or equal to x
LIST -y Program lines less than or equal to y

Examples:

>LIST 150~
130 END

>LIST =90
100 A=279.3

>LIST 105
110 B=-456.8

>LIST O
* BAD LINE NUMBER
>LIST 33961

* BAD LINE NUMBER

>LIST 32.7

* INCORRECT STATEMENT

>NEW
>LIST

* CAN'T DO THAT

RUN Liine-senberi
Estering the RUN command causes the program stored in memory
% begin running. Before the program starts running, the values of
oll sameric variables are set to 210, the values of all string
varishies are sct w0 oull (a string of sero characters), and any space
previously allocated for special graphics characters is released.

N a0 Ainc-samber is specified when the RUN command is entered,
thetn the program starts renning at the lowest numbered line in the
program.

if a kine-number is specified when the RUN command is entered,
then the program starts running at the specified program line. Note
im this exampie that since the program begins running at line 110,
the value of A remains zero.

H you specify a line-number which is not in the program, the
message "BAD LINE NUMBER " is displayed.

If you eater a RUN command when there is no program in memory.
the message "CANT DO THAT is displayed.

>NEN

>100 A=-16
>110 B=25

>120 PRINT A;B
>130 END

>RUN

-16 25

=& DONE =»»x

>RUN 110
o 25

a> DONE »»

>RUN 115

* BAD LINE NUNBER

>NENW
>RUN

& CAN'T DO THAY

L3 |

BYE

BYE

When you are finished working and are ready to leave BASIC,
simply enter the BYE command. We recommend that you always
use the BYE command (instead of SHIFT @) when you wish to leave
BASIC. When the BYE command is entered, the first job your
computer performs is closing all open files (see OPEN statement,
page 145). Then, the program in memory and all variable values are
erased. Finally, the computer is reset so that it is ready to go again
when you want to return to BASIC. After the BYE command is
performed, the master computer title reappears.

Examples:

>NEW

>100 LET X$="MELLO, GENIUS'"
>110 PRINT X$

>120 END

>RUN

HELLO, GENIUS!

*% DONE »#
>BYE

--master computer title
screen appears

52

User's Reloranss Guid

NUMBER

{ NUMBER

| NUM

% linitial-linell . increment

When the NUMBER command is entered, your computer
automatically generates line numbers for you. Your computer is in
Number Mode when it is generating line numbers. In Number
Mode each line entered in response to a generated line number is
added to the program.

The first line number displayed after entering the NUMBER
command is the specified initial-line. Succeeding line numbers are
generated using the specified increment. To terminate the automatic
-generation of line numbers and leave Number Mode, press ENTER
immediately after the generated line number is displayed. The
empty line is not added to the program.

If no initial-Iine and no increment are specified, then 100 1s used as
the initial-line and 10 is used as the increment.

If you specify only an initial-line, then 10 1s used as the increment.

If you specify just an increment, then 100 is used as the initial-line.
Note the comma before the five in the example. Remember, if you
wish to specify only an increment, the comma must be typed before
the increment.

Examples:

>NEW
>NUMBER 10,5

>10 €=38.2
>15 p=16.7
>20 PRINT C;D
>25 END

>30 ENTER
>LIST

10 c=38.2

15 p=16.7

20 PRINT C;B
25 END

>NEW

>NUM

>100 B$="HELLO!"
>110 PRINT B$
>120 END

>130 ENTER

>NEW

>NUMBER 50
>50 C$="HI'!"
>60 PRINT CS$
>70 END

>80 ENTER

>NEW

>NUM ,5

>100 2=99.7
>105 PRINT 2
>110 END
>115 ENTER

M-Rdaw(}mde

53

NUMBER

When you are in Numper Mode, if a line number generated is
already a line in the program, then the existing program line is
displayed with the line number. Note that when an existing
program line is displayed in Number Mode, the prompt character
(>) is not shown to the left of the line number. This indicates the

line is an existing program line and you may choose to edit the line.

For information on editing, see the section below. If you do not
want to change the existing line, simply press ENTER when the line
is displayed and it will not be changed. After you press ENTER, the
next line number is generated.

In Number Mode, if you enter a program line and an error occurs,
the appropriate error message is displayed as usual and then the
same line number is displayed again. Retype the line correctly and
then enter it again. If a line number would be generated in Number
Mode which is greater than 32767, the computer leaves Number
Mode.

Editing in Number Mode

Whether you are entering new lines or changing existing program
lines while in Number Mode, all of the special editing keys may be
used. Since some of the keys work differently in Number Mode
than in Command Mode (see page 47), the keys and how they
work in Number Mode are discussed here.

ENTER — This key has different functions depending on the
situation. The functions and situations are described below.

B If you press ENTER immediately after a line number is generated,
then the computer leaves Number Mode.

® If you type in a statement after the line number is generated and
then press ENTER, the new line is added to the program. Then the
next line number is generated.

B If an existing program line is displayed and you press ENTER
immediately after it is displayed, the line remains the same in the
program. Then the next line number is generated.

B If an existing program line is displayed and you erase the entire
text of the line (leaving only the line number on the screen) and
then press ENTER , the computer leaves Number Mode. The
program line is not removed from the program.

B If you edit a line after it is displayed as an existing program line
and text still remains after the line number and then press anvan,

the existing program line is replaced by the edited line. Then the
next line number is generated.

>NEW

>100 A=37.1
>110 B=49.6
>NUMBER 110
110 B=49.6
>120 PRINT A;B
>130 END
>140 ENTER
>LIST
100 A=37.1
110 B=49.6
120 PRINT A;B
130 END

suer (1] (UP) — The Up-Arrow key works exactly the same as the
SNYER key in Number Mode.

ort (1] (DOWN) ~ The Down-Arrow key works exactly the
same as the ENTER key in Number Mode.

@Y [=] (LEFT) — The Left-Arrow key moves the cursor one

position to the left. When the cursor moves over a character it does
not delete or change it in any way.

oY (=] (RIGHT) — The Right-Arrow key moves the cursor one
position to the right. Using this key allows you to move the cursor
over a character without deleting or changing it in any way.

SMIFT @ (INS) The Insert key works in Number Mode just as it does
in Command Mode. See Special Keys, page 33 for information.

8T F (DEL) — The Delete key works in Number Mode just as it
does in Command Mode. See Special Keys, page 34 for
information.

sierY € (CLEAR) — If you press the Clear key at any time while in
Number Mode, the current line scrolls up on the screen and the
computer leaves Number Mode. Any changes which had been made
on the line before you pressed the Clear key are ignored. Thus, if
you were editing an existing program line, the program line does
not change. If you were typing in a line, the line is not added to the
program.

88FY T (ERASE) — The Erase key erases the entire text of the
program line being displayed. The line number is still displayed.

User's Reference Guide

RESEQUENCE

RESEQUENCE (linitial-linell,increment|
RES

When the RESEQUENCE command is entered, all lines in the
program are assigned new line numbers according to the specified
initial-line and increment.

The new line number of the first line in the program is the specified
initial-line. Succeeding line numbers are assigned using the
specified increment.

If no initial-line and no increment are specified, then 100 is used as
the initial-line and 10 is used as the increment.

If you specify only an initial-line then 10 is used as the increment.

If you specify just an increment, then 100 is used as the instial-line.
Note the comma before the five in the example. Remember, if you
wish to specify only an increment, the comma must be typed in
before the increment.

All line number references in TI BASIC statements contained in
the program are changed to the new line numbers. Line numbers
which may be mentioned in the REM statement (see page 74) are
not changed since they are not essential to the running of the
program.

Examples:

>NEW

>100 A=27.9

>110 B=34.1

>120 PRINT A
>130 END

>RESEQUENCE
SLIST

20 A=27.9
25 B=34.1
30 PRINT A;
35 END

>RES

>LIST
100 A=27.9
110 B=34.1
120 PRINT A
130 END

>RES 50
>LIST

50 A=27.9
60 B=34.1
70 PRINT A;
80 END

>RES ,5
>LIST
100 A=27.9
105 B=34.1
110 PRINT A
115 END

>NEW

>100 REM THE
L BE PRINTE
>110 A=A+1
>120 PRINT A
>130 60 10 1
>RESEQUENCE
>LIST

10 REM THE
L BE PRINTE
15 A=A+1

20 PRINT A
25 60 T0 15

;B

20,5

H:

;B

VALUE OF "A™ WIL
D IN LINE 120

10
10,5

VALUE OF "A" NIL
D IN LINE 120

56

i a line sumber is used in a program line which is not a currently
wsod kine sumber, then the line number reference is changed to
32%67. No error or waraing is given.

if you enter a value for the instial-line and increment which would
give values greater than 32767 for some new line numbers, the
message BAD LINE NUMBER" is displayed. If this error occurs,
oo kine numbers in the program are changed.

If you enter a RESEQUENCE command while no program is in
memory, the message "CAN'T DO THAT" is displayed.

>NEW

>100 2=1+2
>110 PRINT 2
>120 IF Z=50 THEN 150
>130 60 TO 100
>140 END
>RES 10,5
>LIST
10 7=1+2
15 PRINT 2
20 IF 2=50 THEN 32767
25 60 TO 10
30 END

>RESEQUENCE 32600,100
* BAD LINE NUMBER

>LIST

10 2=2+2

15 PRINT 2

20 IF Z=50 THEN 32767
25 GO 10 10

30 END

>NEW
>RESEQUENCE

* CAN'T DO THAT

User’s Reference Guide

57

BREAK

BREAK line-list

When the BREAK command is entered, breakpoints are set at the
program lines listed in the /ine-/ist. Breakpoints are usually set to
help you find errors in your program. When you set a breakpoint at
a specific line using the BREAK command, you tell the computer to
stop running the program before performing the statement on that
line.

The line-list is a list of line numbers where you wish to set
breakpoints. The line numbers are separated by commas (for
example: BREAK 10,23, 35). Of course, you may choose to have
only one line number in the list.

Each time a line where a breakpoint is set is reached while the
program is running, the program stops running before the statement
on that line is performed. When the program stops running because
of a breakpoint, the message "BREAKPOINT AT line-number” is
displayed, and you are prompted with the flashing cursor to enter a
command.

When the program stops running because of a breakpoint, you may
enter any command or any statement that can be used as a
command (see page 45). There is no change in the value of the
variables unless you enter a statement that will assign a new value.
Note that in this example C still equals zero since the assignment in
statement 110 has not been performed.

You can start running the program again (beginning with the line
where the breakpoint was set) by entering the CONTINUE
command (see page 63). Note the value of A was changed earlier in
the example. You cannot enter the CONTINUE command after you
have edited the program (added, deleted, or changed program
lines). This prevents errors that could result from starting a revised
program in the middle. If you enter a CONTINUE command after
you have edited the program, the message “CAN'T CONTINUE" is
displayed on the screen.

Examples:
>NEW

>100 A=26.7
>110 €=19.3
>120 PRINT A

>130 PRINT C
>140 END

>BREAK 110

>RUN
* BREAKPOINT AT 110

>0

>LIST 110
110 €=19.3

>PRINT A;C
26.7 0

>A=5.8

>PRINT A
5.8

>CONTINUE

5.8

19.3

** DONE #w
>BREAK 120
>RUN

* BREAKPOINT AT 120
>110 ENTER

>CONTINUE
* CAN'T CONTINUE

58

p e o —— e — e =

————

When a breakpoint is taken (program stops running because of a
breakpoint), the breakpoint at that line is removed. Another way
0 remove breakpoints is to use the UNBREAK command (see
page 61). If a breakpoint is set at a program line and that line is
deleted. the breakpoint is also removed. Breakpoints are removed
from all program lines when a SAVE command (see page 68) or a
NEW command (see page 48) is entered. Note that in the example,

the breakpoint at 110 was removed when the breakpoint was taken,

while the breakpoint at 130 was removed by the UNBREAK
command.

Whenever a breakpoint is taken, the standard character set (see
page 163) is stored. Thus, any standard characters that had been
redefined by CALL CHAR (see page 104) will be converted back to
the standard characters. Characters defined in the range 96-159 are
unaffected. Note that when this example program is run, a solid bar
appears on the screen until the breakpoint is taken. When the
breakpoint is taken, the bar becomes a row of asterisks (*) since
character 4 2 is a standard character.

Examples:

>110 €=19.3
>RUN

26.7

19.3

® DONE ==*
>BREAK 110,130
>RUN

* BREAKPOINT AT 110
>UNBREAK
>CONTINUE

26.7
19.3

*% DONE *x%
>RUN

26.7

19.3

% DONE w=

>NEW

>100 CALL CLEAR

>110 CALL CHAR(42,"FFFFFFFFFF
FFFFFF")

>CALL HCHAR(12,12,42,10)

>130 FOR I=1 TO 500

>140 NEXT I

>150 END

>BREAK 150

>RUN
=--screen clears

=-solid black Line appears
on screen

4 N

el ko ko ki kg ok

* BREAKPOINT AT 150

L>D

>CONTINUE

% DONE #w

User's Referance Guide

59

BREAK

d

The BREAK command may also be used as a statement in
programs. If the BREAK command is entered as a statement with a
Iine-Iist, then breakpoints are set at the line numbers specified.
Breakpoints set in this manner may be removed as discussed
earlier. Remember, though, when the BREAK command is entered
as a statement with a line-list, the breakpoints are set again each
time the statement is performed.

If the BREAK command is entered as a statement and no J/ine-list is
specified, then the statement itself acts like a breakpoint. Each
time the statement is performed, the program stops running. The
only way to keep the program from stopping at a BREAK
statement is to delete the line from the program. Note that a
BREAK command without a /ine-/ist may only be entered as a
program line.

If you specify a line number in the /ine-list which is equal to zero or
greater than 32767, the message "BAD LINE NUMBER" is
displayed and the command is ignored (no breakpoints are set at
any line specified).

If you specify a line number in the /ine-list which is a valid line
number but is not a line in the program, the warning "BAD LINE
NUMBER" is displayed. Breakpoints will be set at the lines
specified which are program lines.

Examples:
>NEW
>100 B=29.7
>110 BREAK 1
>120 H=15.8
>130 PRINT B
>140 PRINT H
>150 END
>RUN

* BREAKPOIN
>UNBREAK
>CONTINUE

29.7

15.8

% DONE w#=

>110 BREAK
>RUN

* BREAKPOIN
>CONTINUE
29.7
15.8
*% DONE #»

>110 ENTER

>BREAK 120,1
* BAD LIME
>RUN

29.7

15.8

x4 DONE #»

>110 BREAK 1
>RUN

* WARNING:
BAD LINE
29.7
* BREAKPOIN

>CONTINVE
135.8

s¢ DOMNE o»

20,140

T AT 120

T AT 110

30140

25,140

NUNBER N 110

T AT 140

UNBREAK

UNBREAK l/ine-list|

The UNBREAK command is used to remove breakpoints from the
program lines listed in the /ine-list. For an explanation of
breakpoints and how they are set, see the BREAK command,
page S8.

The line-list is a list of line numbers where you want to remove
breakpoints. The line numbers are separated by commas. (For
example: UNBREAK 10,23.) If you specify only one line number in
the line-Iist, no commas are needed.

If you enter an UNBREAK command with no /ine-list, then all
breakpoints which have been set by a BREAK command or
statement are removed. Note that the UNBREAK command has no
effect on a BREAK statement with no /ine-list. The only way to
keep the program from stopping at a BREAK statement with no
Iine-Iist is to delete the line.

The UNBREAK command may also be used as a statement in a
program. The UNBREAK statement is performed just like the
UNBREAK command. Note in the example, the UNBREAK
statement removed the breakpoint that was set at 130.

Examples:

>NEW

>100 A=26.7
>110 €=19.3
>120 PRINT A
>130 PRINT C
>140 END
>BREAK 110,130
>RUN

* BREAKPOINT AT 110

>UNBREAK 130
>CONTINUE

26.7

19.3
*% DONE **
>125 BREAK
>BREAK 100,120,130
>RUN

* BREAKPOINT AT 100
>UNBREAK

>CONTINUE
26.7

* BREAKPOINT AT 125

>CONTINUE
19.3

** DONE **

>BREAK 130
>125 UNBREAK 130
>RUN
26.7
19.3
*x DONE *xx%

>125 ENTER

User's Refereace Guide

61

UNBREAK

If you specify a line number in the /ine-/ist which is equal to zero or
greater than 32767, the message "BAD LINE NUMBER" is

displayed and the command is ignored (no breakpoints are removed
at any line specified).

If you specify a line number in the line-list which is a valid line
number but is not a line in the program, the warning "BAD LINE
NUMBER" is displayed. Breakpoints are removed at the lines
specified which are program lines.

Examples:

>BREAK 130

>UNBREAK 130,110150

* BAD LINE NUMBER

>RUN
26.7

* BREAKPOINT AT 130

>CONTINUE
19.3

% DONE %%

>BREAK 130
>UNBREAK 130,105

* WARNING:
BAD LINE NUMBER

>RUN
26.7
19.3

*%x DONE *#

62

User's Reforenes Guite

CONTINUE

CONTINUE
CON

The CONTINUE command may be entered whenever the program
stops running because of a breakpoint. For an explanation of
breakpoints and how they are set, see the BREAK command, page
58. Remember that a breakpoint is also taken when the Break key
(SMIFY C) 1s pressed while the program is running.

You cannot enter the CONTINUE command when the program has
stopped running for a breakpoint if you have edited the program
(added, deleted, or changed program lines). This prevents errors
that could result from starting a revised program in the middle. If
you enter a CONTINUE command after you have edited the
program, the message "CAN'T CONTINUE" is displayed on the
screen.

Whenever a breakpoint is taken, the standard character set (see
page 163) is stored. Thus, any standard characters that had been
redefined by CALL CHAR (see page 104) will be converted back to
the standard characters. Characters defined in the range 96-159 are
unaffected. If you continue execution after a breakpoint, the
standard character set is used. Note in the example that character

4 2 was defined in statement 110 to be a solid block; however, when
the breakpoint was taken, it was changed back to its standard
character, an asterisk (*). The triangle defined for character code
96 is unaffected by the breakpoint.

Examples:

>NEW

>100 A=9.6
>110 PRINT A
>120 END
>BREAK 110

>RUN
* BREAKPOINT AT 110

>CONTINUE
9.6

*% DONE =**

>BREAK 110

>RUN

* BREAKPOINT AT 110

>100 A=10.1
>CONTINUE
* CAN'T CONTINUE

>NEW

>100 CALL CLEAR

>110 CALL CHAR(C42,"FFFFFFFFFF
FFFFFF™)

>120 CALL CHAR(96,"0103070F1F
3F7FFF")

>130 CALL HCHAR(10,10,42,5)

>140 CALL HCHAR(11,10,96,5)

>150 FOR I=1 TO 500

>160 NEXT I

>170 END

>BREAK 130

>RUN
* BREAKPOINT AT 130

>CONTINUE

hokk kK
d4444

% DONE ==»

User's Reference Guide

TRACE

TRACE

The TRACE command allows you to see the order in which the
computer performs statements as it runs a program. After the
TRACE command is entered, the line number of each program line
is displayed before the statement is performed. The TRACE
command is most often used to help find errors, such as unwanted
infinite loops, in a program.

The TRACE command may be placed as a statement in a program.
The effect of the TRACE command or statement is cancelled when
the NEW command or UNTRACE command or statement is
performed.

Examples:

>NEW

>100 PRINT "HI"
>110 B=27.9
>120 PRINT :B
>130 END

>TRACE

>RUN
<100>HI
<110><120>
27.9
<130>

*% DONE =%

>UNTRACE

>105 TRACE

>RUN

HI

<110><120>
27.9

<130>

*4% DONE #=%

User's Reforsnss Guith

UNTRACE

UNTRACE Examples:

The UNTRACE command cancels the effect of the TRACE

command. The UNTRACE command may be used as a statement >NEW

il & program. >100 FOR I=1 TO 2

>110 PRINT I
>120 NEXT I
>130 END
>TRACE

>RUN
<100><110> 1
<120><110> 2
<120><130>
*%k DONE +*x*

>UNTRACE
>RUN

1

2

*% DONE *=*

fser's Reference Guide

EDIT

EDIT Iine-number
line-number \ SHIFT [1]
SHIFT [1]

Existing program lines may be changed by entering Edit Mode.
You can enter Edit Mode by entering the EDIT command followed
by a line-number or by typing in a line-number followed by SHIFT
[1] (Up-Arrow) or SHIFT [1] (Down-Arrow). Either way you choose
to enter Edit Mode will bring the line specified by the /ine-number
onto the screen. If you specify a line-number which is not in the
program, the message "BAD LINE NUMBER" is displayed.

When you enter Edit Mode, the program line you requested is
displayed on the screen. The prompt character (>) is not displayed
to the left of the line when you are in Edit Mode. When the
requested line is displayed, the flashing cursor is positioned in the
second character position to the right of the line number. Changes
may be made to any character on the line except the line number
using the special keys described below and typing over the
characters you wish to change. You cannot move the cursor back
over the line number. Thus, you cannot change the line number in
Edit Mode. The special editing keys and their functions in Edit
Mode are discussed here.

ENTER — When you press the ENTER key, all changes you have made
to the program line become permanent and the computer leaves
Edit Mode. If you have erased the entire text of the program line
and then press ENTER, the program line is deleted. Note that the
cursor does not have to be at the end of the line for the entire line to
be entered.

SHIFT [1] (UP) — When you press the Up-Arrow key, all changes
you have made to the program line are entered and become
permanent. The next lower numbered line in the program is then
displayed for editing. If no lower numbered program line exists,
then the computer leaves Edit Mode. Note that the cursor does not
have to be at the end of the line for the entire line to be entered by
the Up-Arrow key.

SHIFT (1] (DOWN) — When you press the Down-Arrow key, all
changes you have made to the program line are entered and become
permanent. The next higher numbered program line is then
displayed for editing. If no higher numbered program line exists,
then the computer leaves Edit Mode. Note that the cursor does not
have to be at the end of the line for the entire line to be entered by
the Down-Arrow key.

A

WY (=] (LEFT) — The Left-Arrow (backspace) key moves the
cursor one position to the left. When the cursor moves over a
character it does not delete or change it in any way.

Y [=] (RIGHT) ~ The Right-Arrow (forwardspace) key moves
the cursor one position to the right. Using this key allows you to

move the cursor over a character without deleting or changing it in
any way.

ST @ (INS) — The Insert key works in Edit Mode just as it does
in Command Mode. See Special Keys, page 33 for information.

sMiPY F (DEL) — The Delete key works in Edit Mode just as it does
in Command Mode. See Special Keys, page 34 for information.

siFY € (CLEAR) — If you press the Clear key at any time while in
Edit Mode, the current line scrolls up on the screen and the
computer leaves Edit Mode. Any changes which had been made on
the line before you pressed the Clear key are ignored. Thus, the
existing program line does not change.

SHIFT T (ERASE) — The Erase key erases the entire text of the

program line currently displayed for editing. The line number is not
erased.

User's Reference Guide

67

SAVE

II
|

SAVE file-name

The SAVE command allows you to copy the current program in the
computer's memory onto an accessory device. By using the OLD
command (see page 70), you can later put the program into

memory for running or editing.

An explanation of how to use the audio cassette recorders to SAVE
a program is given here. As additional accessory devices become

available, their accompanying manuals will describe how to use the
SAVE command.

You select which cassette recorder the computer will use by
entering the file-name CS1 or CS2 following the keyword SAVE.
After you have connected your recorder to the computer (see pages
15-16 of this book for detailed instructions on attaching cassette
recorders to your computer), type the SAVE command, press
BNTER, and the computer will begin printing instructions on the
screen to help you understand the SAVE procedures. Follow the
directions as they appear on the screen.

On the right are the computer-generated SAVE instructions. CS1 is
used in the example, but the same procedures apply for CS2 also.
You can find a more detailed description of these instructions on
pages 16-18 of this book.

When you enter the SAVE command, the computer tells you how to
use the recorder, as shown on the right. After the program has been
copied, the computer asks if you want to check the tape to be sure
your program was recorded correctly. If you press N, the flashing
cursor will appear at the left of the screen. You may then type any
BASIC command you wish. If you preas v, directions for activating
the recorder will appear.

>SAVE (CS$1

* REWIND CA
THEN PRES

* PRESS CAS
THEN PRES

* RECORDING

* PRESS CAS
THEN PRES

* CHECK TAP

* REWIND CA
THEN PRES

* PRESS CAS
THEN PRES

* CHECKING
* DATA OK

* PRESS CAS
THEN PRES

SSETTE TAPE cs1
S ENTER

SETTE RECORD (St
S ENTER

SETTE STOP cs1
S ENTER

E (Y OrR N)?Y

SSETTE TAPE cs1

S ENTER
SETTE PLAY €s1
S ENTER
SETTE SYOr cst

8 ERTER

¥ an ervor occurred, you may choose one of these three options:

@ Press A to record your program again. The same
instructions listed previously will guide you.

8@ Press € to repeat the checking procedures. At this point
you may wish to adjust the recorder volume and/or tone
controls.

@ Press E to "exit” from the recording procedure. The

computer will tell you to stop the cassette and press
ENTER. You will see an error message on the screen. This
means that the SAVE routine did not properly record your
program. After checking your recorder, you can try to
record the program again. When the flashing cursor
reappears on the screen, enter any BASIC command you
wish.

See page 17 for a list of items to check if an error occurred while

saving your program.

When the SAVE command is performed, whether or not an error
occurred in recording, the program remains in memory.

Examples:

* ERROR
PRESS
PRESS
PRESS

* ERROR
PRESS
PRESS
PRESS

* 1/0 ER

NO DATA FOUND
TO RECORD

TO CHECK

TO EXIT

mao 0 |

or

IN DATA DETECTED
R TO RECORD

C TO CHECK

E TO EXIT

ROR 66

User's Reference Guide

69

OLD

OLD file-name

The OLD command copies a previously SAVEd program into the
computer's memory. You can then run, list, or change the program.
An explanation for using the audio cassette tape recorder (CS1)
with the OLD command is given here. As additional

accessory devices become available, their accompanying manuals
will describe how to use the OLD command.

After you type the OLD command and press ENTER, the computer
will begin printing instructions on the screen to help you through
the procedures. Follow the directions as they appear on the screen.
Be sure you have connected the recorder and inserted the proper
cassette tape. (See pages 15-16 of this book for detailed instructions
on attaching a cassette recorder to your computer.)

On the right are the instructions displayed on the screen when you
enter the OLD command. You will find a detailed description
of these procedures on pages 16-18.

If the computer did not successfully read your program into
memory, an error occurs and you may choose either of these
options:

B Press R to repeat the reading procedure. Before

repeating the procedure, be sure to check the items
listed on page 18.

B Press E to "exit” from the reading procedure. An error
message indicating that the computer did not properly
read your program into memory is displayed.

When the flashing cursor reappears on the screen, you may enter
any BASIC command you wish.

Examples:

>0LD CSs1

* REWIND CASSETTE TAPE cs1
THEN PRESS ENTER

* PRESS CASSETTE PLAY cs1
THEN PRESS ENTER

* READING

* DATA 0K

* PRESS CASSETTE STOP cs1

THEN PRESS ENTER
or
* ERROR - NO DATA FOUND
PRESS R TO READ
PRESS E TO EXIT

* 1/0 ERROR 56

70

User's Refarence Guude

DELETE

DELETE ’ file-name (

| program-name \

Examples:

The DELETE command allows you to remove a program or a
data file from the computer’s filing system. The file-name and

program-name are string expressions. If a string constant is used,
you must enclose it in quotes.

>5AVIE NAML S

S0LLETE NAMES

You may also remove data files {rom the computer system by using 2500 CLOsE #rzpETET
the keyword DELETE in the CLOSE statement (see page 149)
The action performed depends upon the deviee used.

If you use DELETE with cassette tape recorders, no action occurs AELLTL st
The message on the right will appear on the sereen.

A PRESS CASSETLE L0 (N
ITHIN PRISS ENTLER

Door s Relerorce Gundr e et m e et e et et i e o o

. ,7.1

General Program Statements

Introduction

This section describes those general program statements that do
not serve an input-output function. They include the LET
statement, which allows you to assign values to variables, the
STOP, END, and REMark statements, and those statements which
control the path the computer takes when it runs your program.
These program control statements, including the GOTO, the ON-
GOTQ, the IF-THEN-ELSE, the FOR-TO-STEP, and the NEXT
statements, allow you to easily program loops and conditional and
unconditional branches. By using the statements in this section and

in the Input-Output section, you can write enjoyable, useful
programs.

User's Ralvrence Gu:

LET (Assignment Statement)

| LET | variable = expression

The LET statement allows you to assign values to variables in your
program. The computer evaluates the expression to the right of the
equals sign and puts its value into the variable specified to the left
of the equals sign.

The variable and the expression must correspond in type: numeric
expressions must be assigned to numeric variables (see page 39);

string expressions must be assigned to string variables (see page 39).

The rules governing overflow and underflow for the evaluation

of a numeric expression are used in the LET statement. See page
37 for a full explanation. When a string expression is evaluated, if
the string length exceeds 255 characters, then the string is
truncated on the right, and the program continues. No warning is
given.

You may use relational operators in numeric and string expressions.
The result of a relational operator is -1 if the relationship is true
and is O if the relationship is false (see page 42 for a complete
explanation).

Examples:
>NEW

>100 LET M=1000
>110 LET C€=186000
>120 E=M*(CA2
>130 PRINT E
>140 END
>RUN

3.4596E+13

k% DONE *x

>NEW

>100 LET X$="HELLO, "
>110 NAMES$S="GENIUS!'"
>120 PRINT X$;NAMES
>130 END

>RUN

HELLO, GENIUS'

x DONE w

>NEW

>100 LET A=20
>110 B=10
>120 LET C=A>B
>130 PRINT A;B;C
>140 C=A150 PRINT A;B;C
>160 END
>RUN

20 10 -1

20 10 O

** DONE *%

User's Refereace Guide

73

REMark

REM remark

The REMark statement allows you to explain and document your
program by inserting comments in the program itself. When the
computer encounters a REMark statement while running your
program, it takes no action but proceeds to the next statement.

You may use any printable character in a REMark statement. The
length of the REMark statement is limited by the length of the
input line (112 characters or four lines on the screen). If you do not
wish to break a word in the middle, press the space bar repeatedly
until the cursor returns to the left side of the screen, and then you
may begin typing again.

Exampies:

>NEW

>100 REM COUNTING FROW 1 TO

10

>110 FOR Xx=1 TO0 10
>120 PRINT X;

>130 NEXT X
>140 END
>RUN
1 2 3
10
#% DONE *»

>NEW

>100 A=762
>110 B=425

4

5 6 7 8 9

>120 REM NOW PRINT THE Ssum OF

A AND B

>130 PRINT A+B

>140 END
>RUN
1187

% DONE w

74

User's Reference Guude

END

END

The END statement terminates your program when it is being run
and may be used interchangeably with the STOP statement in T1
BASIC. Although the END statement can appear anywhere in the
program, it is normally placed at the last line number in the
program and thus ends the program both physically and logically.
Although you may place END statements anywhere in your
program, the STOP statement is usually used if you want to have
other termination points in your program (see page 76). In T1
BASIC you are not required to place an END statement in the
program.

Examples:
>NEW

>100 A=10
>110 B=20
>120 C=A*B
>130 PRINT €
>140 END
>RUN

200

*%x DONE **

User's Reference Guide

75

STOP

STOP Examples:
The STOP statement terminates your program when it is being run >NEW
and can be used interchangeably with the END statement in TI
) >100 A=S
BASIC. You can place STOP statements anywhere in your 5110 BS$="TEXAS INSTRUMENTS"
program and use several STOP statements in the same program. >120 PRINT B$;A
Many BASIC programmers use the END statement if there is only ;;3 2 sToe
one ending point in the program (see page 75). TEXAS INSTRUMENTS 5
#% DONE #»»
>NEW

>100 CALL CLEAR

>110 FOR I=1 TO 15
>120 CALL HCHAR(1,1,42,768)
>130 60suUB 160

>140 NEXT I

>150 STOP

>160 F=I

>170 B=I+1

>180 CALL COLOR(2,F,B)
>190 RETURN

>200 END

>RUN

-=SCREEN WILL FILL WITH
ASTERISKS AND CHANGE
COLORS 15 TIMES

*x DONE »»

7 User's Rulseence Guide

GOTO

line-number

The GOTO statement allows you to transfer control backward or
forward within a program. Whenever the computer reaches a
GOTO statement, it will always jump to the statement with the
specified /ine-number. This is called an unconditional branch.

In the program on the right, line 170 is an unconditional branch.
The computer will always skip to line 140 at this point. Line 160 is
a conditional branch (see page 79). The computer will jump to line
180 only if COUNT and DAYS are equal.

If you should tell the computer to skip to a /ine-number that does
not exist in your program, the program will stop running and print
the message "BAD LINE NUMBER."

Note that the space between the words GO and TO is optional.

Examples:

>NEW

>100

THE
>110
>120
>130
>140
>150
>160
>170
>180
>190
>200

REM HOW MANY GIFTS ON
12 DAYS OF CHRISTMAS?
GIFTS=0

DAYS=1

COUNT=0

COUNT=COUNT+1
GIFTS=GIFTS+1

IF COUNT=DAYS THEN 180
GOTO 140

DAYS=DAYS+1

If DAYS<=12 THEN 130
PRINT "TOTAL NUMBER OF

IFTS IS";GIFTS

>210
>RUN

END

G

TOTAL NUMBER OF GIFTS IS 78

*% DONE *=*

User’s Reference Guide

77

ON-GOTO

ON numeric-expression GOTO line-number |, line-number. . .
GO TO

The ON-GOTO statement tells the computer to jump to one of
several program lines, depending on the value of the numeric-
expression.

The computer first evaluates the numeric-expression and rounds
the result to an integer. This integer then becomes a pointer for the
computer, indicating which program line in the ON-GOTO
statement to perform next. If the value of the numeric-expression is
1, the computer will proceed to the statement with the first /ine-
number specified in the ON-GOTO statement. If the value is 2, the
computer will branch to the statement with the second /ine-number
listed in the ON-GOTO statement, and so on.

If the rounded value of the numeric-expression is less than 1 or
greater-than the number of /ine-numbers listed in the ON-GOTO
statement, the program will stop running and print "BAD VALUE
IN xx." If the line-number you specify is outside the range of line
numbers in your program, the message "BAD LINE NUMBER" is
displayed and the program stops running.

Examples:

>NEW

>100 REM HOW DOES ON-GOTO
WORK?

>110 INPUT X

>120 ON X 60TO 130,150,170,19
0,210

>130 PRINT "Xx=1"

>140 GO0TO 110

>150 PRINT "x=2"

>160 GOTO 110

>170 PRINT "Xx=3"

>180 GOTD 110

>190 PRINT “X=4"

>200 GOTO 110

>210 END

>RUN

* BAD VALUE IN 120

78

User's Relarencs Guidr

IF-THEN-ELSE

F {nela tional-expression

numeric-expression }THEN Iine-1 [ELSE line-2|

The IF-THEN-ELSE statement allows you to change the normal
sequence of your program execution by using a conditional branch.
See page 42 for a full explanation of relational-expressions.

The computer evaluates the expression you have included in the
statement, such as A>50. If the expression is true, the computer
will jump to /ine-1, which follows the word THEN. If the condition
is false, the computer will jump to /ine-2 following the word ELSE.
If ELSE is omitted, the computer continues with the next program
line.

The allowable relational operators in TI BASIC are:

B equal to (=)

H less than (<)

W greater than (>)

B not equal to (< >)

M less than or equal to (< =)

W greater than or equal to (> =)

Here are some valid relationship tests:

mA>7

B AS<'YES”
m(A+B)/2<>AVG
m CHRS$(L)="A"

8 (A$&CS)>=D$

A numeric-expression must be compared to another numeric-
expression and a string-expression to another string-expression.
Numeric-expressions are compared algebraically. String-
expressions are compared left-to-right, character by character,
using the ASCII character codes (see Appendix page 163 for ASCII
character codes). A character with a lower ASCII code will be
considered less than one with a higher ASCII code. Thus, you can
sort strings into numeric or alphabetic order. If one string is longer
than the other, the comparison is made for each character in the
shorter string. If there is no difference, the computer considers the
longer string to be greater.

Examples:

>NEW

>100 REM FIND THE LARGEST OF
A SET OF NUMBERS

>110 INPUT "HOW MANY VALUES?"
:N

>120 INPUT "VALUE?":A

>130 L=A

>140 N=N-1

>150 IF N<=0 THEN 180

>160 INPUT "VALUE?":A

>170 IF L>A THEN 140 ELSE 130

>180 PRINT L;"IS THE LARGEST"

>190 END
>RUN
HOW MANY VALUES?3
VALUE?456
VALUE?321
VALUE?292
456 1S THE LARGEST

*% DONE *=*x

>NEW

>100 INPUT “AS IS ":AS
>110 INPUT "BS IS ":BS
>120 IF A$=B$ THEN 160
>130 1IF AS<BS THEN 180
>140 PRINT "BS IS LESS"
>150 GOTO 190

>160 PRINT "AS$=BS"
>170 6O0TO 190

>180 PRINT "BS IS GREATER"
>190 END

>RUN

AS IS TEXAS

BS IS TEX

B$ IS LESS

«#% DONE =»w»
>RUN

AS IS TAXES
8% IS TEX

BS IS GREATER

** DONE =»«o

User's Reference Guide

79

IF-THEN-ELSE

An alternative format of the IF-THEN-ELSE statement is to use a
numeric-expression with no relationship expressed. In the example
on the right, the computer will evaluate the expression A +B. If the
result is zero, the expression is treated as false. A non-zero result is
treated as true. This is the same as:

IF expression <> 0 THEN line-1.

Examples:

>NEW

>100 INPUT "A 18§ ":A
>110 INPUT "B 18 ":PD
>120 1F A+B THEN 150
>130 PRINT "RESULT 18 ZEROC,EX
PRESSION FALSE"
>140 6070 100
>150 PRINT "RESULT IS NON-ZER
0,EXPRESSION TRUE"”
>160 60 TO 100
>RUN

A 1s 2

B IS 3

RESULT IS NON-ZERO,EXPRESSIO
N TRUE

A Is 2

8 Is -2

RESULT IS ZERO,EXPRESSION FA
LSE

(PRESS SHIFT € TO END LOOP)

User's Relarence Guide

FOR-TO-STEP

FOR control-variable = initial-value TO limit\STEP increment Examples:

The FOR-TO-STEP statement is used for easy programming of NEW

repetitive (iterative) processes. Together with the NEXT statement

(see page 84) the FOR-TO-STEP statement is used to construct a >100 REM COMPUTING SIMPLE
X : : : INTEREST FOR 10 YEARS

FOR NEXT loop. If the STEP clause is omitted, the computer will 5110 INPUT "PRINCIPLE? “:P

use an increment of +1. >120 INPUT “RATE? ":R

>130 FOR YEARS=1 TO0 10
>140 P=P+(P*R)

>150 NEXT YEARS

>160 P=INT(P*100+.5)/100
>170 PRINT P

>180 END

>RUN

PRINCIPLE? 100

RATE? .0775

210.95
*% DONE ##

The control-variable is a numeric variable which acts as a counter
for the loop. When the FOR-TO-STEP statement is performed, the
control-variable is set to the initial-value. The computer then
performs program statements until it encounters a NEXT
statement.
When the NEXT statement is performed, the computer increments >NEW
the control-variable by the amount specified in the STEP clause.
(When the increment is a negative value, the control-variable is ’222c$§ﬂuff“?:t§EﬂzNT
actually reduced by the STEP amount.) The computer then >110 FOR X=.1 TO 1 STEP .2
compares the control-variable to the value of the limit. If the ;‘1| gg :zi #TXX;
control-variable does not yet exceed the Iimit, the computer repeats >140 PRINT :X
the statements following the FOR-TO-STEP statement until the >150 END
NEXT statement is again encountered and performed. If the new >RU;‘ 3 .5 7 .9
value for the control-variable is greater than the /imit (if the 1.0 7

increment is positive) or less than the /imit (if the increment is
negative), the computer leaves the loop and continues with the
program statement following the NEXT statement. The value of
the control-variable is not changed when the computer leaves the
FOR-NEXT loop.

You control the number of times the FOR-NEXT loop is performed >NEW
by the values you assign in the FOR-TO-STEP statement. The

*k DONE »%

>100 L=5

Iimist, and, optionally, the STEP increment are numeric-expressions >110 FOR I=1 TO L
that are evaluated once during a loop performance (when the FOR- | >120 L=20
TO-STEP statement is encountered) and remain in effect until the ;: 28 : 2;':71“ I
loop is finished. Any change made to these values while a loop is in >150 END
progress has no effect on the number of times the loop is performed. >Rg" ;
If the value of the increment is zero, the computer displays the error Zg 2
message "‘BAD VALUE IN xx" and the program stops running. 20 3

20 4

20 5

** DONE wx

User's Reference Guide

FOR-TO-STEP

After you enter a RUN command, but before your program is
performed, the computer checks to see that you have the same
number of FOR-TO-STEP and NEXT statements. If you do not
have the same number, the message “"FOR-NEXT ERROR" is
displayed and the program is not run.

If you change the value of the control-variable while the loop is
performed, the number of times the loop is repeated is affected.

In TI BASIC the expressions for instial-value, limit, and increment
are evaluated before the initial-value is assigned to the control-
variable. Thus, in the program on the right, in line 110 the value 5
is assigned to the /imit before assigning a value to I as the contro/-
variable. The loop is repeated S times, not just once.

The sign of the control-variable can change during the performance
of a FOR-NEXT loop.

When performing the FOR statement, the computer checks that the
limit exceeds the instial-value before it does the loop. The initial-
value in the FOR statement does not have to be 1. The computer
can begin counting with whatever numeric value you wish.
However, if the initial-value is greater than the /imit and the
increment is positive, the loop will not be performed at all. The
computer will continue on to the statement following the loop.
Similarly, if the increment is negative and you assign an initial-
value less than the /imit, the loop will not be performed.

Examples:

>100 FOR I=1 TO 10
>110 1=1+1

>120 PRINT I

>130 NEXT 1

>140 PRINT 1

>150 END

10
1"

wx DONE =%

>NEW

>100 I=5
>110 FOR I=1 70 I
>120 PRINT I;
>130 NEXT 1

>140 END

>RUN

1 2 3 & 5
x% DONE »»

>NEW

>100 FOR I=2 YO -3 STEP -
>110 PRINT I;
>120 NEXT 1

>130 END
>RUN
2 1 0 -1 -2 -3
a2 DONE =
>NEW

>100 REM INITIAL VALUE 700
GREAT

>110 FOR 16 10 3

>120 PRINT 1

>130 NEXY 1
>140 END
>RUN

*s PONE oo

82

Uner's Referencs Guide

FOR-TO-STEP

FOR-NEXT loops may be "nested”; that is, one FOR-NEXT loop
may be contained wholly within another. You must use caution,
however, to observe the following conventions:

@ Each FOR-TO-STEP statement must be paired with a

NEXT statement.

@ Different control-variables must be used for each nested

FOR-NEXT loop.

@ If a FOR-NEXT loop contains any portion of another
FOR-NEXT loop, it must contain al/l of the second FOR-

NEXT loop.

Otherwise, the computer will stop running your program and print
the error message "CAN'T DO THAT IN xx” if a FOR-NEXT loop

overlaps another.

You may branch out of a FOR-NEXT loop using GOTO and IF-
THEN-ELSE statements, but you may not branch into a FOR-
NEXT loop using these statements. You may use GOSUB
statements to leave a FOR-NEXT loop and return. Be sure you do
not use the same control-variable for any FOR-NEXT loops you
may have in your subroutines.

Examples:

>NEW

>100 REM FIND THE LOWEST
THREE DIGIT NUMBER EQUAL TO
THE SUM OF THE CUBES OF ITS
DIGITS

>110 FOR HUND=1 TO 9

>120 FOR TENS=0 T0 9

>130 FOR UNITS=0 TO0 9

>140 SUM=100*HUND+10*TENS+UNI
TS

>150 IF SUM<S>HUNDA3+TENSA3+UN
ITSA3 THEN 180

>160 PRINT SUM

>170 60TO 210

>180 NEXT UNITS

>190 NEXT TENS

>200 NEXT HUND

>210 END

>RUN

153

*x DONE *=*

>NEW

>100 FOR I=1 TO 3
>110 PRINT I
>120 GOSUB 140
>130 NEXT I
>140 FOR I=1 TO 5
>150 PRINT I;
>160 NEXT I
>170 RETURN
>180 END
>RUN
1
1 2 3 4 5
* CAN'T DO THAT IN 130

User's Refereace Guide

NEXT

NEXT control-variable

The NEXT statement is always paired with the FOR-TO-STEP
statement for construction of a loop. The control-variable is the
same one that appears in the corresponding FOR-TO-STEP
statement.

The NEXT statement actually controls whether the computer will
repeat the loop or exit to the program line following the NEXT
statement.

When the computer encounters the NEXT statement, it adds the
previously evaluated increment in the STEP clause to the control-
variable. It then tests the control-variable to see if it exceeds the
previously evaluated /imit specified in the FOR-TO-STEP
statement. If the control-variable does not exceed the /imit, the loop
is repeated.

Examples:
>NEW
>100 REM COUNTING FROMW 9 TO
10
>110 FOR x=1 TO0 10
>120 PRINT X;
>130 NEXT X
>140 END
>RUN
1 2 3 4 5 6 7 8 9
10
*% DONE #x
>NEW
>100 REM ROCKET COUNTDOWN
>110 CALL CLEAR
>120 FOR I=10 TO 1 STEP -1
>130 PRINT 1
>140 FOR DELAY=1 70 200
>150 NEXT DELAY
>160 CALL CLEAR
>170 NEXT 1
>180 PRINT "BLAST OFfF!"
>190 REM CHANGE SCREEN COLOR
>200 FOR COLOR=2 TO 16 STEP 2
>210 CALL SCREEN(COLOR)
>220 FOR DELAY=1 TO 100
>230 NEXT DELAY
>240 NEXT COLOR
>250 END
>RUN

--computer will flash countdow

BLAST OFF!

--screen will change color
8 times

s+ DONE #w

User's Reference Guide

Input-Output Statements

imtroduction

INPUT-OUTPUT statements allow you to transfer data in and out
of your program. This section describes these statements (PRINT,
DISPLAY. INPUT, READ, DATA, RESTORE) as they are used

with your TI Home Computer keyboard and screen.

Data can be input to your program from three types of sources:

@ from the keyboard — using the INPUT statement

@ internally from the program itself — using the READ,
DATA, and RESTORE statements

@ from files stored on accessory devices — using the INPUT
statement

Data can go to two types of output devices:

B the screen — using the PRINT or DISPLAY statements
B files stored on accessory devices — using the PRINT
statement

There are two other sections in this Reference Guide which
describe additional input-output capabilities of the TI Home
Computer. The File Processing Section will help you construct the
statements used with accessory devices. And, since your T]1 Home
Computer is enhanced by graphics, color, and sound, many built-in
subprograms also serve an input-output function. The Color
Graphics and Sound Section will show you how to use these
features.

User's Reference Guide

INPUT

INPUT linput prompt| variable-list

(For information on the use of the INPUT statement with a file, see
the section on File Processing beginning on page 144)

This form of the INPUT statement is used when entering data via
the keyboard. The INPUT statement causes the program to pause
until valid data is entered from the keyboard. Although the
computer usually accepts up to one input line (4 lines on your
screen) for each INPUT statement, a long list of values may be
rejected by the computer. If you receive the message "LINE TOO
LONG" after entering an input line, you will need to divide the
lengthy INPUT statement into at least two separate statements.

Entering the input Statement

The input-prompt is a string expression that indicates on the screen
the values you should enter at that time. Including an input-prompt
in the INPUT statement is optional. When the computer performs
an INPUT statement that does not have an input-prompt, it
displays a question mark (?) followed by a space and waits for you
to enter your data.

If you use an input-prompt, the string expression must be followed
by a colon. When the computer performs this type of INPUT
statement, it will display the input-prompt message on the screen
and wait for you to enter your data.

The variable-Iist contains those variables which are assigned values
when the INPUT statement is performed. Variable names in the
variable-list are separated by commas and may be numeric and/or
string variables.

>NEW

>100 INPUT B
>110 PRINT B
>120 END
>RUN
? 25
a5

** DONE w#

>NEM

>100 INPUT "COST OF CAR?":B
2110 AS="TAX?"
>120 INPUT AS:C
>130 INPUT "SALES "BAS:X
>140 PRINT B;C;X
>150 END
RUN
COST OF CAR?S5500
TAX?500
SALES TAX?*500
5500 500 500

** DONE 22

>NEW

>100 INPUT A,BS,C,0
>110 PRINT A:B$:C:D
>120 END

RUN

? 10,HELLOD,25,3.2

** DONE o2

Uners Refarencs Guide

INPUT

Responding to an Input Statement

When an INPUT statement is performed, the values corresponding
to the variables must be entered in the same order as they are listed
in the INPUT statement. When you enter the values, they must all
be entered in one input line (up to 4 screen lines) with the values
separated by commas. When inputting string values, you may
enclose the string in quotes. However, if the string you wish to
input contains a comma, a leading quote mark, leading spaces, or
trailing spaces, it must be enclosed in quotes.

Variables are assigned values from left to right in the variable-list.
Thus, subscript expressions in the variable-list are not evaluated
until variables to the left have been assigned values.

Examples:
>NEW

>100 INPUT AS
>110 PRINT AS::
>120 INPUT BS
>130 PRINT BS$::
>140 INPUT C$
>150 PRINT CS$::
>160 INPUT DS
>170 X=500

>180 PRINT DS$;X::
>190 INPUT ES
>200 PRINT ES$
>210 END

RUN

? "JONES, MARY"
JONES, MARY

? """HELLO THERE"""
"HELLO THERE"

? "JAMES B. SMITH, JR."
JAMES B. SMITH, JR.

? "SELLING PRICE IS "
SELLING PRICE IS 500

? TEXAS
TEXAS

*% DONE **

>NEW

>100 INPUT I,A(CI)
>110 PRINT I:A(3)
>120 END

RUN

? 3,7

3

7

*% DONE *=x

User's Reference Guide

87

INPUT

When input information is entered, it is validated by the computer.
If the input data is invalid, the message "WARNING: INPUT
ERROR, TRY AGAIN" appears on the screen and you must
reenter the line. Here are some causes of this message:

W if you try to enter input data that contains more or fewer
values than requested by the INPUT statement.

B if you try to enter a string constant when a number is
required. (Remember, a number is a valid string, so you
may enter a number when a string constant is required.)

If a number is input that causes an overflow (see page 37), the
message "WARNING: NUMBER TOO BIG, TRY AGAIN”
appears on the screen and you must reenter the line. If a number is
input that causes an underflow (see page 37), the value is replaced
by zero. No warning message is given.

Exampiles:

>NEW

>100 INPUT A,BS
>110 PRINT A;BS$

>120 END
>RUN
2 12,H1,3

* WARNING:

INPUT ERROR IN 100

TRY AGAIN:

* WARNING:

HI,3

INPUT ERROR IN 100

TRY AGAIN:
23 HI

*k DONE *x%

>NEW

>100 INPUT A
>110 PRINT A
>120 END
>RUN

? 23E139

* WARNING:

NUMBER TO
TRY AGAIN:
0

*% DONE *=»

23 ,HI

0 BI6 IN 100
23E-139

Usar's Reforeace Guide

READ

READ variable-list Examples:

The READ statement allows you to read data stored inside your
program in DATA statements (see page 91). The variable-list >NEW
specifies those variables that are to have values assigned. Vanable >100 FOR I=1 TO 3

names in the variable-list are separated by commas. The variable- >110 READ X,Y
list may include numeric variables and/or string variables. ::;g oRwT Xav
>140 DATA 22,15,36,52,48,96.5
>150 END
>RUN
22 15
36 52
48 96.5
++ DONE #»»
The computer reads each DATA statement sequentially from left to >NEW
right and assigns values to the vanables in the variable-list from left 5100 READ I.ACI)
to right. Subscript expressions in the variable-list are not evaluated >110 DATA 2.35
until variables to the left have been assigned. ;:gg :::NT AC2)
>RUN
35
*%x DONE *+*
DATA statements are normally read in line-number order. Each >NEW
time a READ statement is performed, values for the variables in 5100 FOR 1=1 TO 2
the variable-list are assigned sequentially. using all the items in the >110 FOR J=1 TO 4
data-list of the current DATA statement before moving to the next >120 READ A,B
DATA statement. You can override this sequencing, however, by :: 28 : ::'T” JhiBe
using the RESTORE statement (see page 92). >150 PRINT
>160 RESTORE 190
By following the program on the right, you can see how the READ, >170 NEXT I
DATA, and RESTORE statements interact. In line 120 the ;}gg AT 55‘12'23128
computer begins assigning values to A and B from the DATA >200 DATA 20,22,24,26
statement with the lowest line number, line 180. The first READ. >210 END
therefore. assigns A=2 and B=4. The next performance of the >agu “ 6 B 10 12 14 16
READ statement still takes data from line 180 and assigns A=6. 12 14 16 18 20 22 24
B=8. The third READ assigns the last item in line 180 to the 26
variable A and the first item in line 190 to the vanable B, so ++ DONE %

A=10, B=12. The fourth READ, the last in the]J-loop, continues
to get data from line 190. so A =14, B=16. Before going through
the I-Hoop again, however, note that the computer encounters a
RESTORE statement in line 160 which directs it to get data from
the beginning of line 190 for the next READ statement. The
computer then completes the program by reading the data from line
190 and then from line 200.

READ

When data is read from a DATA statement, the type of data in the
data-list and the type of variables to which the values are assigned
must correspond. If you try to assign a string value to a numeric
variable, the message "DATA ERROR IN xx” (xx is the line
number of the READ statement where the error occurs) appears on
the screen and the program stops running. Remember that a

number is a valid string so numbers may be assigned to either
string or numeric variables.

When a READ statement is performed, if there are more names in
the variable-list than values remaining in DATA statements, a
"“DATA ERROR" message is displayed on the screen and the
program stops running. If a numeric constant is read which causes
an underflow (see page 37), its value is replaced by zero — no
warning is given — and the program continues running normally. If
a numeric constant is read which causes an overflow (see page

37), its value is replaced by the appropriate computer limit (see
page 37), the message “WARNING: NUMBER TOO BIG” is
displayed on the screen, and the program continues.

Exampies:

>NEW

>100 READ A,B
>110 DATA 12,HELLO

>120 PRINT
>130 END
>RUN

A;D

* DATA ERROR IN 100

>0

>NEW

>100 READ A
>110 DATA 1

,B
2E~-135

>120 DATA 36E142

>130 PRINT
>140 READ C
>150 END
>RUN

* WARNING:

:A:B

NUMBER TOO BI6& IN 100

0
9.99999E+++

* DATA ERROR IN 140

>0

Usar's Refereacs Cuide

DATA

DATA data-Iist

The DATA statement allows you to store data inside your program.
Data in the data-lists are obtained via READ statements when the
program is run. The data-/ist contains the values to be assigned to
the variables specified in the variable-list of a READ statement (see
page 89). Items in the data-list are separated by commas. When a
program reaches a DATA statement, it proceeds to the next
statement with no other effect.

DATA statements may appear anywhere in a program, but the
order in which they appear is important. Data from the data-lists
are read sequentially, beginning with the first item in the first DATA
statement. If your program includes more than one DATA
statement, the DATA statements are read in ascending line-number
order unless otherwise specified by a RESTORE statement (see
page 92). Thus, the order-in which the data appears within the
data-list and the order of the DATA statements within the program
normally determines in which order the data is read.

Data in the data-list must correspond to the type of the variable to
which it is assigned. Thus, if a numeric variable is specified in the
READ statement, a numeric constant must be in the corresponding
place in the DATA statement. Similarly, if a string variable is
specified, a string constant must be in the corresponding place in
the DATA statement. Remember that a number is a valid string, so
you may have a number in the corresponding place in the DATA
statement when a string constant is required.

When using string constants in a DATA statement, you may enclose
the string in quotes. However, if the string you include contains a
comma, a leading quote mark, leading spaces, or trailing spaces, it
must be enclosed in quotes.

If the list of string constants in the DATA statement contains
adjacent commas, the computer assumes you want to enter a null
string (a string with no characters). In the example on the right, the
DATA statement in line 110 contains two adjacent commas. Thus,
a null string is assigned to B$, as you can see when the program is
run.

Exampies:

>NEW

>100
>110
>120
>130
>140
>150
>160
>RUN

S NNOOOON

FOR I=1 TO S
READ A,B

PRINT A;B

NEXT I

DATA 2,4,6,7,8
DATA 1,2,3,4,5
END

VIW a2~

*% DONE **

>NEW

>100 READ AS,BS,C,D
>110 PRINT AS:BS$:C:D
>120 DATA HELLO,"JONES, MARY"
,28,3.1416
>130 END

>RUN

HELLO
JONES, MARY

28

3.1416

** DONE *=

>NEW

>100
>110
>120
>130
>140
>150

RUN

READ AS,BS,C

DATA HI,,2

PRINT "AS IS ";aS
PRINT "BS IS “;BS
PRINT "C IS ";¢C
END

AS IS HI
BS IS

€ IS

2

** DONE =%

User’s Reference Guide

91

RESTORE

RESTORE l/ine-numberl
(See page 162 for using RESTORE for file processing.)

This form of the RESTORE statement tells your program which
DATA statement to use with the next READ statement.

When RESTORE is used with no /ine-number and the next READ
statement is performed, values will be assigned beginning with the
first DATA statement in the program.

When RESTORE is followed by the line-number of a DATA
statement and the next READ statement is performed, values will
be assigned beginning with the first data-item in the DATA
statement specified by the /ine-number.

If the /ine-number specified in a RESTORE statement is not a
DATA statement or is not a program line number, then the next
READ statement performed will start at the first DATA statement
whose line number is greater than the one specified. If there is no
DATA statement with a line number greater than or equal to the
one specified, then the next READ statement performed will cause
an out-of-data condition and a "DATA ERROR" message will be
displayed. If the line-number specified is greater than the highest
line number in the program, the program will stop running and the
message "DATA ERROR IN xx" will be displayed.

Examples:

>NEW

>100
>110
>120
>130
>140
>150
>160
>170
>180
>190
>RUN

12

40

FOR 1=1 TO 2

FOR J=1 TO 4

READ A

PRINT A;

NEXT J

RESTORE 180

NEXT I

DATA 12,33,41,26,42,50
DATA 10,20,30,40,50
END

33 41 26 10 20 30

k% DONE *#*

>NEW

>100
>110
>120
>130
>140
>150
>160
>RUN

10

FOR I=1 TO 5
READ X
RESTORE

PRINT X;

NEXT 1

DATA 10,20,30
END

10 10 10 10

% DONE #

>NEW

>100
>110
>120
>130
>140
>150
>160
>RUN

26.
26.

READ A,B
RESTORE 130
PRINT A;B

READ C,D

PRINT €;D

DATA 26.9,34.67
END

9 34.67
9 34.67

*k DONE =+

>110
>RUN

26.
26.

RESTORE 145

9 34.67
9 34.67

*% DONE wu+

>110
>RUN

26.

RESTORE 155

9 34,67

* DATA ERROR IN 130

>0

92

Users Reference Guide

PRINT

PRINT lprintbst)
(For mformation on the PRINT statement as used with files, see
pages 157 to 161))

The PRINT statement lets you print numbers and strings on the
screen. The print-list consists of -
8 printitems — DUMETiC EXpressions and string eXpressions
which print on the screen and tab-functrons which control
print positioning (similar to the TAB key on the typewriter).
@ print-separatars — the punctuation between print-items
(commas, colons, and semicolons) which serves as
indicators for positioning data on the print-hne.
When the computer performs a PRINT statement, the values of the
expressions in the print-list are displayed on the screen in order
from left to nght, as specified by the print-separatars and
tab-functions.

Printing Strings

String expressions in the print-list are evaluated to produce a string
result. There are no blank spaces inserted before or after a string.
If you wish to print a blank space before or after a string you can
mclude it in the string or insert it separately with quotes.

Printing Numbers

Numeric expressions in the print-Iist are evaluated to produce a
pumeric result to be printed. Positive numbers are printed with a
leading space (instead of a plus sign) and negative numbers are
printed with a leading minus sign. All numbers are printed with a
trailing space.

Examples:

>NEN

>100
>110
>120
>130
>140
>150
>RUN

10

A=10

B=20

STRINGS="TI CORPUTER"
PRINT A;B:STRINGS
PRIRT “HELLO, FRIEND"™
END

20

TI COMPUTER
HELLO, FRIEND

*x DORE 22

>NEN

>100
>11¢
>120
>130
>140
>15¢
>RUN

NS="JOAN"

RS="HI"

PRINT RS NS

PRINT RSR8"™ “ENS
PRINT “HELLO “;NS
END

HIJOAN
HI JOAN
HELLO JOANM

2% DONE »»

>NEWM

>100
>110
>120
>130
>140
>150
>RUN

10.
-zo -

LET A=10.2
8=-30.5
€=16.7
PRINT A;8;C
PRINT A+B
END

2 =30.5
3

16.7

2% DONE 2»*

User's Reference Guide

PRINT

The PRINT statement displays numbers in either normal decimal
form or scientific notation (see page 37), according to these rules:

1. All numbesgs with 10 or fewer digits are printed in normal
decimal form.

2. Integer numbers with more than 10 digits are printed in scientific
notation.

3. Non-integer numbers with more than 10 digits are printed in
scientific notation only if they can be presented with more
significant digits in scientific notation than in normal decimal
form. If printed in normal decimal form, all digits beyond the
tenth digit are omitted.

If numbers are printed in normal decimal form, the following
conventions are observed:

B Integers are printed with no decimal point.

B Non-integers have the decimal point printed in its proper
place. Trailing zeros in the fractional part are omitted. If
the number has more than ten digits, the tenth digit is
rounded.

B Numbers with a value less than one are printed with no
digits to the left of the decimal point.

If numbers are printed in scientific notation, the format is:
mantissa E exponent
and the following rules apply:

B The mantissa is printed with 6 or fewer digits and is
always displayed with one digit to the left of the decimal
point.

B Trailing zeros are omitted in the fractional part of the
mantissa.

B [f there are more than five digits in the fractional part of
the mantissa, the fifth digit is rounded.

@ The exponent is displayed with a plus or minus sign
followed by a two-digit number.

B If you attempt to print a number with an exponent value
larger than +99 or smaller than —99, the computer will
print ** following the proper sign of the exponent.

Examples:

>PRINT =10;7.1
-10 7.1

>PRINT 93427685127
9.34277E+10

>PRINT 1E-10
.0000000001

>PRINT 1.2E-10
1.2E-10

>PRINT .000000000246
2.46E-10

SPRINT 15;-3
15 =3

>PRINT 3.350;-46.1
3.35 ~46.1

>PRINT 791.123456789
791.1234568

>PRINT =12.7E-3;0.64
-.0127 .64

>PRINT .0000000001978531
1.97853€E-10

>PRINT -98,.77€21
-9.877E+22

>PRINT 736.400E10
7.364E+12

>PRINT 12.36587€-15
1.23659E-14

>PRINT 1.25€-9;-43.6E12
1.25E-09 -4.36E+13

>PRINT .76E126;81€-115
T.6E+ax 8 _1E-ew

94

User's Reforence Guide

PRINT

Print-Separators

Each screen line used with the PRINT statement has 28 character
positions numbered from left to right (1-28). Each line is divided
into two 14 -character print zones. By using the print-separators and
the tab-function, you can control the position of the print-items
displayed on the screen.

There are three types of print-separators. semicolons, colons, and
commas. At least one print-separator must be placed between
adjacent print-items in the print-list. Multiple print-separators may
be used side by side and are evaluated from left to right.

The semicolon print-separator causes adjacent print-items to print
side by side with no extra spaces between the values. In the
program on the right, the spaces after the numbers appear only
because all numbers are printed with a trailing space regardless of
the type of print-separator used.

The colon print-separator causes the next print-item to print at the
beginning of the next line.

Print lines are divided into two zones. The first zone begins in
column 1 and the second begins in column 15. When the computer
evaluates a comma print-separator, the next print-item is printed at
the beginning of the next zone. If it is already in the second print
zone when a comma print-separator is evaluated, the next print-item
is begun on the next line.

Examples:
>PRINT "A"::"B"
A
B
>NEW
>100 A=-26
>110 B=-33

>120 C$="HELLO"

>130 DS="HOW ARE YOU?"
>140 PRINT A;B;CS$;D$

>150 END

>RUN

~26 -33 HELLOHOW ARE YOU?

*% DONE ww»
>NEW
>100 A==-26

>110 BS="HELLO"

>120 C$="HOW ARE YQU?"
>130 PRINT A:BS$:CS
>140 END

>RUN

-26

HELLO

HOwW ARE YOU?

*x DONE #*w

>NEW

>100 AS="ZONE 1"
>110 BS="Z0NE 2"
>120 PRINT AS,B$
>130 PRINT AS:,BS,AS
>140 END

>RUN
LONE 1 I0NE 2
Z0NE 1

ZONE 2
ZONE 1
** DONE »«

User's Refereace Guide

DISPLAY

DISPLAY [print-list]

The DISPLAY statement is identical to the PRINT statement when
you use it to print items on the screen. The DISPLAY statement
may not be used to write on any device except the screen. For a
complete discussion of how to use this statement, follow the
instructions for the PRINT statement beginning on page 93.

Exampies:

>NEW

>100 A=35.6
>110 B8$="HI!'!"
>120 €=49.7
>130 PRINT BS:A;(C
>140 DISPLAY 88:A;C
>150 END
>RUN

HIt!

35.6 49.7

HI!!

35.6 49.7

% DONE »»

PRINT

s

A print-item will not be split between two screen lines unless the
print-item is a string with more than twenty-eight characters. In
that case the string is always begun on a new line and is printed
with twenty-eight characters per line until the entire string is
printed. If a numeric print-item is such that the only character not
able to fit on the current line is a trailing space, then the number
will be printed on the current line. If the number itself will not fit on
the current line, it is printed on the next line.

The print-list may end with a print-separator. If the print-list is not
terminated by a print-separator (line 130), the computer considers
the current line completed when all the characters produced from
the print-list are printed. In this case the first print-item in the next
PRINT statement (line 140) always begins on a new line.

If the print-list ends with a print-separator (line 140), then the print-
separator is evaluated and the first print-item in the next PRINT
statement (line 160) will start in the position indicated by the print-
separator.

You may use a PRINT statement with no print-list. When such a
PRINT statement is performed, the computer advances to the first
character position of the next screen line. This has the effect of
skipping a line if the preceding PRINT statement has no print-
separator at the end.

Examples:

>NEW

>100
>110
>120
>130
>140
>150

>160
>RUN

23767 79856 103623
A= 23767 B= 79856 (=

A=23767
B=79856

C=A+8

D=B-A

PRINT A;B;C;D

PRINT "A=",'A;"B=",'B,' ue="
;C;"D=";D

END

D= 56089

x*xkx DONE %%

>NEW

>100
>110
>120
>130
>140
>150
>160
>170
>RUN

23

23

A=23
B=597
PRINT
PRINT
PRINT
C=468
PRINT C
END

> D >
L 1) -
@
LX)

597
597 468

*% DONE **

>NEW

>100
>110
>120
>130
>140
>150
>RUN

20

15

A=20
PRINT A
PRINT
B=15
PRINT B
END

% DONE ##

>NEW

>100
>110
>120
>130
>140
>150
>160
>RUN
1
1

FOR J=1 TO 2
FOR I=1 TO 3
PRINT I;
NEXT I

PRINT

NEXT J

END

2 3

*% DONE *=&

56089
103623

User's Reference Guide

97

CLEAR subprogram

CALL CLEAR

The CLEAR subprogram is used to clear (erase) the entire screen.
When the CLEAR subprogram is called, the space character (code
32) is placed in all positions on the screen.

When the program on the right is run, the screen is cleared before
the PRINT statements are performed.

If the space character (code 32) has been redefined by the CALL
CHAR subprogram (see page 104), the screen will be filled with the
new character when the CALL CLEAR is performed, rather than
with spaces.

Examples:

>PRINT "HELLO THERE!'!"
HELLO THERE!
>CALL CLEAR

--screen clears

>NEW

>100 CALL CLEAR

>110 PRINT "HELLO THERE!"
>120 PRINT "HOW ARE YOU?”
>130 END

>RUN

--screen clears

HELLO THERE!
HOW ARE YOU?

*% DONE *+*

>NEW

>100 CALL CHAR(32,"0103070F1F
3F7FFF")

>110 CALL CLEAR

>120 GOTO0 120

>RUN

-=-screen will be filled
with 4

(Press SHIFT C to stop
the program.)

100

User's Referance Gugl

golor Graphics and Sound

A special set of subprograms has been built into the TI Home

Computer to provide color graphics, sound. and other capabilities
not usually found in BASIC.

Whenever you want to use one of these special subprograms, you
call for it by name and supply a few specifications. The subprogram
then takes over. performs its task, and provides you with such
things as musical tones, screen colors. and special graphics
characters. These features are particularly useful when you are
programming simulations, graphs, patterns on the screen, or your
own “computer music.” All of the subprograms may be used in
Command Mode as well as in programs.

The built-in subprograms can be grouped according to their
function:
#8 INPUT subprograms — GCHAR, JOYST, KEY
8 OUTPUT subprograms — CLEAR, HCHAR, VCHAR,
SOUND, SCREEN
® INTERNAL subprograms — CHAR, COLOR (the results
of these subprograms aren't evident until you use an
OUTPUT operation to see the results on the screen).

The graphics subprograms feature a 24-row by 32-column screen
display. The 28 print positions normally used in TI BASIC
correspond to columns 3 through 30, inclusive, in the graphics
subprograms. Because some display screens may not show the two
leftmost and two rnightmost characters, your graphics may be more
satisfactory if you use columns 3 through 30 and ignore columns 1
and 2 on the left and 31 and 32 on the right. Experiment with
different line lengths to determine how many positions show on
your screen.

User's Refereace Guide

99

COLOR subprogram

To use CALL COLOR you must also specify to which of sixteen
character sets the character you are printing belongs. The list of
ASCII character codes for the standard characters is given in the
Apperdix, page 163. The character will be displayed in the color
specified when you use CALL HCHAR (page 108) or CALL

VCHAR (page 111). The character-set-numbers are given below.

Set Number Character Codes
1 32-39
2 40-47
3 48-55
4 56-63
5 64-71
6 72-79
7 80-87
8 88-95
9 96-103

10 104-111
11 112-119
12 120-127
13 128-135
14 136-143
15 144-151
16 152-159

Note that all 24 rows and 32 columns are filled with the space
character until you place other characters in some of these
positions. If you use character set 1 in the CALL COLOR
statement, all space characters on the screen are changed to the
background-color specified since the space character is contained in
set 1. This change is demonstrated by the program on the right.

Examples:

>NEW

>100 CALL CLEAR

>110 CALL COLOR(1,16,14)
>120 CALL SCREEN(13)

>130 CALL VCHAR(1,15,35,24)
>140 GOTO 140

>RUN

-=screen clears
-==24 white #'s with

a magenta background on a
dark-green screen

f B

ST s azs sz x

\ ﬁw

==Note that the screen color
appears only at the tap s
bottom of the screen

(Pross SHIFTYT C to stop
the progranms)

102

COLOR subprogram

CALL COLOR (character-set-number, foreground-color-code, background-color-code)

The COLOR subprogram provides a powerful design capability by
allowing you to specify screen character colors. (To change the
screen color itself, see the SCREEN subprogram on page 103.)
The character-set-number, foreground-color-code, and background-
color-code are numeric expressions.

Each character displayed on your computer screen has two colors.
The color of the dots that make up the character itself is called the
foreground color. The color that occupies the rest of the character
position on the screen is called the background color. Sixteen colors
are available on the TI Home Computer so your entries for

foreground and background color must have a value of 1 through 16.

The color codes are given in the table below:

Color Code Color
1 Transparent
2 Black
3 Medium Green
4 Light Green
5 Dark Blue
6 Light Blue
7 Dark Red
8 Cyan
9 Medium Red
10 Light Red
11 Dark Yellow
12 Light Yellow
13 Dark Green
14 Magenta
15 Gray
16 White

If transparent (code 1) is specified. the present screen color (see
page 103) shows through when a character is displayed. Until a
CALL COLOR s performed. the standard foreground-color is black
(code 2) and the standard background-color is transparent (code 1)
for all characters. When a breakpoint (see page 58) occurs. all
characters are reset to the standard colors.

Examples:

>NEW

>100 CALL CLEAR

>110 INPUT "FOREGROUND?":F
>120 INPUT "BACKGROUND?":B
>130 CALL CLEAR

>140 CALL COLOR(2,F,B)

>150 CALL HCHAR(12,3,42,28)
>160 G0 TO 110

>RUN

--screen clears

FOREGROUND??2
BACKGROUND? 14

--screen clears

(28 black asterisks with
a magenta background)

4 N

AN F RN NN LA RN RNRN L RENXX

S FOREGROUND?

(Press SHIFT C to stop
the program)

>NEW

>100 CALL CLEAR

>110 CALL SCREEN(12)

>120 cALL €OLOR(2,1,7)

>130 CALL HCHAR(12,3,42,28)
>140 GOTO0 140

>RUN

--screen clears
(transparent asterisks with

8 dark-red background on a
Light-yellow screen)

i*t*tti*ttit*t*t*ii*t*ii

(Press SHIFT € to stop
the program)

Users Reference Guide

101

CHAR subprogram

(Character definition)

CALL CHAR(char-code, 'pattern-identifier”)

The CHAR subprogram allows you to define your own special
graphics characters. You can redefine the standard set of characters

(ASCII codes 32-95) and establish additional characters with codes
06-159.

The char-code specifies the code of the character you wish to define
and must be a numeric expression with a value between 32 and
159, inclusive. If the character you are defining is in the range 96-
159 and there is insufficient free memory to define the character,
the program will terminate with a "MEMORY FULL" error.

The pattern-identifier is a 16-character string expression which
specifies the pattern of the character you want to use in your
program. This string expression is a coded representation of the 64
dots which make up a character position on the screen. These 64
dots comprise an 8-by-8 grid as shown below. greatly enlarged.

LEFT RIGHT
BLOCKS | BLOCKS

ROW 1
ROW 2
ROW 3
ROW 4
ROW 5
ROW 6
ROW 7
ROW 8

Each row is partitioned into two blocks of four dots each:

aANYyrow LI 1T T T[] 1]
| | |

LEFT RIGHT
BLOCK BLOCK

Examples:

>NEW

>100 CALL
>110 CALL

FFFFFF')
>120 CALL
>130 CALL
>140 GOTO
>RUN

-=screen

CLEAR
CHARC33,"FFFFFFFFFF

COLOR(1,9,6)
VCHAR(12,16,33)
140

clears

(Press SHIFT C to stop
the program)

104

Users Reference G\ulh

géﬁEEN subp(ogra

CALL SCREEN (cvlorcode)

The SCREEN subprogram enhances the graphic capabilities of the
T1 Home Computer by allowing you to change the screen color.
The standard screen color while a program is running is light green
(color-code =4).

The color-code is a numeric expression which, when evaluated., has
a value of 1 through 16. The table of the sixteen available colors
and their codes is given below.

Color-code Color
1 Transparent
2 Black
3 Medium Green
4 Light Green
S Dark Blue
6 Light Blue
7 Dark Red
8 Cvan
9 Medium Red
10 Light Red
11 Dark Yellow
12 Light Yellow
13 Dark Green
14 Magenta
15 Gray
16 White

When the CALL SCREEN is performed. the entire sereen
background changes to the color specified by the colorcode. All
characters on the screen remain the same unless vou have specitied
a transparent foreground or background color for them. In that
case, the screen color “shows through™ the transparent foreground
or background.

The screen is set to cyan (code 8) when a program stops for a
breakpoint (see page S8) or termnates Hovou CONTINUL
program (see page 63) after a breakpoint. the sereen will be reset
to the standard color (light green).

Unet s Reference Guide

Examples:

PNEW

>100 CALL CLEAR

>110 INPUT "SCREELN COLOR?™:S
120 INPUT "FPUREGROUND?":}
>130 INPUT "HACKGROUND?":R
1640 CALL CLLAR

>150 CALL SCREENC(S)

>160 CALL COLURC(Z,} , B)

170 CALL HCHARC1?,8,42,08)
>180 GOTO 110

>RUN

-~swcreen clears

SCREEN COLOR??
FOREGROUND?1S
BACKGROUND?16

--screen clears

--?8 dark-green asterisks

with a white background on
a dark-red screen

[)

IEA R AR R AR EREENERN N RN RN EER N

SCRFEN COLOR?

(Press SHIFT ¢ to ~top
the program)

TIK!

HCHAR subprogram

(Horizontal character repetition)

CALL HCHAR (row-number, column-number, char-code | .number-of-repetitionsl)

The HCHAR subprogram places a character anywhere on the
screen and, optionally, repeats it horizontally. The row-number and
column-number locate the starting position on the screen. The row-
number, column-number, char-code, and number-ofrepetitions are

NUMETIC eXpressions.

If the evaluation of any of the numeric expressions results in a non-
integer value, the result is rounded to obtain an integer. The valid

ranges are given below:
Value

Row-number
Column-number
Char-code
Number-of-repetitions

Range

1-24, inclusive
1-32, inclusive
0-32767, inclusive
0-32767, inclusive

Examples:

>CALL CLEAR
--screen clears

>CALL HCHAR(10,1,72,50)

7

HHHHHHHHHHHHHHHHHHHHHHHHHNHN
HHHHHHHHHHHHHHHHH

>CALL HCHAR(10,1,72,50)

\,

>NEW
>100 CALL CLEAR

>110 FOR s=2 TO 16

>120 CALL COLOR(S,S,S)

>130 NEXT S

>140 CHR=40

>150 FOR X=8 TO0 22

>160 CALL VCHAR(4,X,CHR,15)
>170 CALL HCHAR(X=4,8,CHR,15)

>180 CHR=CHR+8
>190 NEXT X
>200 GOTO 140
>RUN

-=screen clears

--makes a pattern on the
screen using various COLORS

(Press SHIFT C to stop
the program)

108

User's Reference Guide

CHAR subprogram

Each character in the stning expression describes the pattern of
dots in one block of a row. The rows are described from left to right

from top to bottom. That 1s. the first two characters in the
string describe the pattern for row one of the dot-grid. the next two
descnibe row two. and so on.

Characters are created by turning some dots “on™ and leaving
others "off.” The space character (code 32) is a character with all
the dots turned “off " Turning all the dots “on” produces a sohd
block (®m).

AH the standard characters are automatically set so that they turn
“on” the appropniate dots. To create a new character. you must tell
the computer what dots to turn on or leave off in each of the 16
blocks that contain the character. In the computer a binary code 1s
used to specify what dots are on or off within a particular block.
However. a “shorthand™ method called hexadecimal. made up of
numbers and letters. is used to control the on/off condition. The
table that follows contains all the possible on/off conditions for the
dots within a given block and the hexadecimal notation for each
condition.

Binary Code Hexadecimal
Blocks (0=0f.1=0n) Code

il 0000
T | B 0001
B i | 0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101

= 1110
e e 1111

-

MTOOOWP»POONOUnNS&EWN

User's Reference Guide

105

HCHAR subprogram

To repeat the specified character, enter a value for the number-of
repetitions. The computer will display the character beginning at
the specified starting position and continue on the left side of the
next line. If the bottom of the screen is reached, the display will
continue on the top line of the screen. You should use 768 for
number-of-repetitions to fill all 24 rows and 32 columns. Using a
number larger than 768 will unnecessarily extend the time required
to perform this statement.

Examples:

>NEW

>100 CALL CLEAR

>110
>120
>130
>140
>RUN

FOR I=9 T0 15

CALL HCHAR(I,13,36,6)
NEXT 1

GOTO 140

creen clears

r~

N

$355353
$$333$S
$333s83
$3335$$
$$33SS
$$5533
$33388

(Pre

$s SHIFT € to stop
the program)

110

User's Refarance Gusde

CHAR subprogram

b

Hnmmﬁrnbtukpoim(secpagesa.thosechamtus
redefining codes 32-95 are reset to their normal representation.
MMW%ISOmW. When the program ends
either normally or because of an error. all redefined characters are
reset and any characters assigned to codes 96-159 are reset to be
undefined.

Examples

>NEN

>100
>110

CALL
CALL

FFFFFF")

>120

CALL

OFOFOF"™)

>130
>140
>150
>160
>170
>RUN

CALL
CALL

CLEAR
CHARCOG, “FFFFFFFFFF

CHAR(4A2, “OFOFOFOFOF

HCHAR(12,17,42)
VCHAR(14,17,96)

FOR DELAY=1 TO0 350

NEXT
END

DELAY

--screen clears

o>

2 DONE »»

>CALL HCHAR(24,5,42)

*

HCHAR subprogram

To repeat the specified character, enter a value for the number-of-
repetitions. The computer will display the character beginning at
the specified starting position and continue on the left side of the
next line. If the bottom of the screen is reached, the display will
continue on the top line of the screen. You should use 768 for
number-of-repetitions to fill all 24 rows and 32 columns. Using a
number larger than 768 will unnecessarily extend the time required
to perform this statement.

Exampies:

>NEW

>100
>110
>120
>130
>140
>RUN

CALL CLEAR

FOR 1=9 10 15

CALL HCHAR(1,13,36,6)
NEXT I

60TO0 140

--gcreen clears

-~

N

$53338
53353
$53533
$5333S
$533383
533538
$5333S

(Press SHIFT C to stop
the program)

110

User's Refarence G

HWCHAR subprogram

A value of 1 for row-number indicates the top of the screen. A value
of 1 for column-number indicates the left side of the screen. The
atreen can be thought of as a “grid” as shown here.

COLUMNS

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
tbadstrdodntbtizbistizbiodandazbastazdaedannd

1

22—

3

4 —

5

6—

7

88—

9

10—~

11

12—~

NWEOX

13

14—~

15

16—

17

18—~

19

20—~

21

22—

23

24—~

Because columns 1, 2, 31, and 32 may not show on your screen,
you may want to use only column-numbers 3 through 30.

Although you may specify a value as large as 32767 for char-code,
the computer will convert the value specified to a range of 0
through 255. Character codes 32 through 95 are defined as the
standard ASCII character codes (see Appendix, page 163).
Character codes 96 through 159 may be defined using the CHAR
subprogram (see page 104). If you specify an undefined character
for charcode, you will get whatever is in memory at the time the
HCHAR subprogram is called.

>CALL HCHAR(24,14,29752)
8

>CALL HCHAR(24,14,35)
’

>CALL HCHAR(24,14,99)

--displayed character depends
on what is in memory now

109

SOUND subprogram

CALL SOUND(duration, frequencyl,volumell .frequency2,volume2ll, frequency3,volume3\.frequency4, volume4)

‘The SOUND subprogram tells the computer to produce tones of

different frequencies. The values you include control three aspects
of the tone:

B duration — how long the tone lasts.
B frequency — what tone actually plays.
B vo/ume — how loud the tone is.

The duration, frequency, and volume are numeric expressions. If the
evaluation of any of the numeric expressions results in a non-integer
value, the result is rounded to obtain an integer. The valid ranges

for each of these are given in the table and discussed further below.

Value Range
duration 1 to 4250, inclusive
—1 to —4250, inclusive
frequency (Tone) 110 to 44733, inclusive
(Noise) —1 to —8, inclusive
volume 0 (loudest) to 30 (quietest), inclusive
Duration

The duration you specify is measured in milliseconds. One second is
equal to 1000 milliseconds. Thus, the duration ranges from .001 to
4.25 seconds. (The actual duration may vary as much as 1/60th of
a second.) The duration you specify applies to each sound generated
by a particular CALL SOUND statement.

In a program, the computer continues performing program
statements while a sound is being played. When you call the
SOUND subprogram, the computer will wait until the previous
sound has been completed before performing the new CALL
SOUND statement unless a negative duration is specified. If you
specify a negative duration in the new CALL SOUND statement,
the previous sound is stopped and the new one is begun
immediately.

Examples:
>CALL SOUND(100,294,2)

--plays a single tone

>NEW

>100 TONE=110

>110 FOR COUNT=1 TO 10

>120 CALL SOUND(-500,TONE, 1)
>130 TONE=TONE+110

>140 NEXT COUNT

>150 END

>RUN

-- plays ten tones quickly
% DONE *=%

>120 CALL SOUND(+500,TONE,1)
>RUN

-~-plays ten tones slowly

#% DONE #+#

112

User's Reference Gusde

VCHAR subprogram

{Vertical character repetition)

=

CALL VCHAR (row-number, column-number, char-code | ,number-of-repetitions|)

The VCHAR subprogram performs very much like the HCHAR
‘subprogram except that it repeats characters vertically rather than
horizontally. The computer will display the character beginning at
the specified position and continuing down the screen. If the bottom
of the screen 1s reached. the display will continue at the top of the
next column to the right. If the right edge of the screen is reached,
the display will continue at the left edge. See the HCHAR
subprogram on page 108 for more detalils.

Examples:
>CALL CLEAR

--screen clears

>CALL VCHAR(2,10,86,13)

7~ N
Vv
'
v
Vv
)
v
v
)
Vv
Vv
>CALL VCHAR(2,10,86,13)
\ _J
>NEW
>100 CALL CLEAR
>110 FOR I=13 T0 18
>120 CALL VCHAR(9,1,36,6)
>130 NEXT I
>140 GOTOD 140
>RUN
-- screen clears
4 N
$333533%
$33$3%%
$3$3%%%
$3833%9%
$$533%8
$3333¢8%
\. y

(Press SHIFT C to stop
the program)

User’s Reference Guide

111

GCHAR subprogram

(Get character)

CALL GCHAR (row-number,column-number,numeric-variable)

The GCHAR subprogram allows you to read a character from
anywhere on the display screen. The position of the character you
want 1s described by row-number and column-number. The
computer will put the ASCII numeric code (see Appendix, page
163) of the requested character into the numeric-variable you
specify in the CALL GCHAR statement.

The row-number and column-number are numeric expressions. If
the evaluation of the numeric expressions results in a non-integer
value, the result is rounded to obtain an integer. A value of 1 for
row-number indicates the top of the screen. A value of 1 for column-
number specifies the left side of the screen. The screen can be
thought of as a “grid” as shown here.

COLUMNS

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
1t 3dst7dodtunbizbastizbiobarbaztastazdaodand

22—+

24—

Examples:

>NEW

>100 CALL CLEAR
>110 CALL HCHAR(1,1,36,768)
>120 CALL GCHAR(S,10,X)
>130 CALL CLEAR

>140 PRINT X
>150 END
>RUN

--screen clears

--screen fills with 3

(code 36)

--screen clears

36

*kx DONE #**»

114

User's Refereace Gude

SOUND subprogram

Frequency

The frequency you specify may be either a tone or a noise. The
tones. measured in Hertz (one cycle per second, |Hzl), can be
specified from a low-pitch of 110 Hz to a high pitch of 44733 Hz,

well above human hearing limits. (The actual frequency produced

may vary from zero to ten percent depending on the
frequency.) The frequencies for some common musical notes are

given in the Appendix, page 167.

If a negative value for frequency is specified, a noise, rather than a

tone. is produced. The noise is either "white noise” or "periodic
noise.” The noise associated with each value is given in the table

below. Since it is difficult to describe the difference between noises,
you can try out the different noises yourself to become familiar with

each one.
Noise Characteristics
Frequency

Value Characteristic
-1 "Periodic Noise™ Type 1
-2 "Periodic Noise” Type 2
-3 "Periodic Noise™ Type 3
-4 “Periodic Noise™ that varies with the

frequency of the third tone specified

-5 "White Noise™ Type 1
-6 "White Noise™ Type 2
-7 "White Noise” Type 3
-8 “White Noise™ that varies with the

frequency of the third tone specified

A maximum of three tones and one noise can be activated
simultaneously. For each tone or noise specified. its volume must
be indicated immediately following the tone or noise.

Examples:

>CALL SOUND(1000,440,2)

~--plays a single tone

>CALL SOUND(500,-1,2)

--plays a single noise

>NEW

>100 FOR NOISE=-1 TO -8 STEP
-1
>110 CALL SOUNDC(1000,NOISE,2)

>120 NEXT NOISE
>130 END
>RUN

--all 8 different noises
are generated

x*% DONE *x

>CALL SOUND(2000,~3,5)

--plays a single noise

>CALL SOUND(2500,440,2,659,5,
880,10,-6,15)

--plays 3 tones and 1 noise

>DUR=2500

>voL=2

>C=262

>E=330

>6=392

>CALL SOUND(DUR,C,VOL,E,VOL,G
,VOL)

--produces a C-major chord

User’s Referonce Guide

113

JOYST Subprogram

CALL JOYST (key-unit x-return,y-return)

The JOYST subprogram allows you to input information to the
computer based on the position of the lever on the Wired Remote
Controllers accessory (available separately).

The key-unitis a numeric expression which, when evaluated, has a
value of 1 through 4.

B 1 =controller 1
B 2 =controller 2
B 3 and 4 = reserved for possible future devices

Numeric variables must be used for x-return and y-return. The
subprogram assigns an integer value of —4, +4, or 0 to each of
these variables, based on the position of the joystick at that time, as
shown below. The first value in parentheses is x-return and the
second value is y-return.

{0.4)

(—4.4)

(4.4)
(—4.0)

(4.0)

(—4.—4) (4.—4)

(0.—4)

You may then use these values in your program by referring to the
variable names.

You will find more detailed instructions in the manual enclosed with
the optional remote controls.

>NEW

>100
>110

CALL CLEAR »
CALL CHARC42,"FFFFFFFFFF

FFFFFF")

>120
>130
>140
>150
>160
>170
>180
>190
>200
>210
>RUN

INPUT "SCREEN COLOR?":S
INPUT “BLOCK COLOR?":Ff
CALL CLEAR

CALL SCREEN(S)

CALL COLOR(2,F,1)

CALL JOYST(2,X,Y)
A=X*2.2+416.6
B=Y*1.6412.2

CALL HCHAR(B,A,42)

GOTO 170

--screen clears

SCREEN COLOR?14
BLOCK cOLOR?9

--screen clears

-~color block will move
around screen as joystick
controller is moved

(Press SHIFT C to stop the

program)

116

User's Reference Guude

KEY subprogram

CALL KEY (key-unit, return-variable, status-variable) Examples:

The KEY subprogram allows you to transfer one character from
the keyboard directly to your program. This eliminates the need for
an INPUT statement and saves time in getting data from a single
key into memory. Because the character represented by the key
pressed is not displayed on the screen, the information already on
the screen is not disturbed by performing the CALL KEY
statement. The key-unit, which indicates which keyboard is the
input device, is a numeric expression which, when evaluated, has a
value 0 through 5, as shown below:

@ 0 =console keyboard

@ 1 =left side of console keyboard or remote control 1
B 2 =right side of console keyboard or remote control 2
@ 3, 4, 5 =available for possible future devices

1 and 2 are used when you want to use the console keyboard as two
separate smaller duplicate keyboards, or you are using the remote
control firebuttons.

The return-variable must be a numeric variable. The computer will >NEW
place in return-variable the numeric character code represented by >100 CALL KEY(0.KEY.STATUS)
the key pressed. If the unit used is the console keyboard (unit 0), 5110 IF STATUS=0 THEN 100
the character codes are the normal ASCII codes (see page 163) and >120 NOTE=KEY-64
will range from 0-95. If you are using the split keyboard (unit 1 > 3300?9302506%2 220,270,130
and/or unit 2), the character codes will be 0 through 19. See page >140 6070 100°
165 for a list of these codes and their corresponding characters. >150 NOTE=262
>160 GOTO 280
The status-variable is a numeric variable which serves as an >170 NOTE=294

>180 6O0TO 280

indicator to let you know what happened at the keyboard. The 5190 NOTE=330
computer will return one of the following codes to the status- >200 GOTO 280
: - o >210 NOTE=349
variable after performing the CALL KEY routine: 3520 60TO 280
B +1 = anew key was pressed since the last performance >§30 N8T5=2:3
) >240 GOTO 280
of the CALL KEY routine . 5250 NOTE=440
B —1 = the same key was pressed during the performance >260 60TO 280
- - >270 NOTE=494
of CALL KEY as was pressed during the previous >280 CALL SOUND(100,NOTE,2)
performance >290 GOTO 100
B 0 = no key was pressed >RUN
You can then check this status indicator in your program to ~-plays a different note on

the scale as you press

determine what action to take next, as shown in line 110 of the the corresponding key (A=G)

program on the right. Line 110 is a test that gives you time to
find and press a different key before the computer continues on to (Press SHIFT C to stop
the next statement the program)

User's Reference Guide 115

ABS — Absolute Value

ABS(numeric-expression)

The absolute value function gives you the absolute value of the
argument. The argument is the value obtained when the numeric-
expression is evaluated. The normal rules for evaluating numeric
expressions (page 40) are used here. If the argument is positive,
then the absolute value function gives you the argument itself. If the
argument is negative, the absolute value function gives you the
negative of the argument. Thus, for an argument, X:

mIf X >0, ABS(X)=X
mIf X <0, ABS(X)=-X
(e.g.. ABS(-3) =~(-3) =3)

ATN — Arctangent

ATN(numeric-expression)

The arctangent function gives you the arctangent of the argument.
The argument is the value obtained when the numeric-expression is
evaluated. The normal rules for evaluating numeric expressions
(page 40) are used here. Thus, ATN(x) gives you the angle (in
radians) whose tangent is x. If you want to get the equivalent angle
in degrees, you need to multiply the answer you get by (180/(4
*ATN(1))) or 57.295779513079 which is 180/7. The value given to
you for the arctangent function is always in the range
—m/2<ATN(x)< 7/2.

Examples:

>NEW

>100 A=-27.36

>110 B=9.7

>120 PRINT ABS(A);ABS(B)

>130 PRINT ABS(3.8);ABS(-4.5)

>140 PRINT ABS(-3#2)
>150 PRINT ABS(A*(B-3.2))
>160 END
>RUN
27.36 9.7
3.8 4.5
6
177.84

% DONE *»

>NEW

>100 PRINT ATN(.44)
>110 PRINT ATN(1E127)
>120 PRINT ATNCT1E-129);ATN(O)

>130 PRINT ATN(,.3)%57,2957795
13079
>140 PRINT ATN(.3)%(180/(4w»AT
NC1)D)
>150 END
>RUN
4145068746
1.570796327
0o 0
16.69924423
16.69924423

*4 DONE =+#

118

User's Reference Guide

Built-in Numeric Functions

introduction

Many special purpose functions are built in to TI BASIC. The
functions described in this section perform some of the frequently
used arithmetic operations. Obtaining the equivalent results for
these functions requires a lot of programming in BASIC. Thus, they
have been built in to TI BASIC and made easy for you to use. Built-
in functions which are used with strings are discussed in the Built-
In String Functions section, page 125. In addition to the built-in

functions. you can also define your own functions (see User-Defined
Functions, page 130).

User's Reference Guide 117

INT — Integer

INT(numeric-expression)

The integer function gives you the largest integer that 1s not greater
than the argument. The argument is the value obtained when the
numeric-expression is evaluated. The normal rules for evaluating
numeric expressions (page 40) are used here. The integer function
always gives you the closest integer which is to the left of the
number specified on the number line. Thus, for positive numbers,
the decimal portion is dropped; for negative numbers, the next
smallest integer value is used (i.e.. INT(—2.3) = - 3). If you specify
an integer, then the same integer is given.

Exampies:

>NEW

>100 B=.678

>110 A=INT(B*100+.5)/100

>120 PRINT A;INT(B)

>130 PRINT INT(=2.3);INT(2.2)

>140 STOP
>RUN

.68 0
-3 2

*x DONE wnn

LOG — Natural Logarithm

LOG(numeric-expression)

The natural logarithm function gives you the natural logarithm of
the number specified by the argument. The argument is the value
obtained when the numeric-expression is evaluated. The normal
rules for the evaluation of numeric expressions (page 40) are used
here. The natural logarithm of x is usually shown as: log,(x). The
logarithm function is the inverse of the exponential function (EXP),
see page 119. Thus, X =LOG(EXP(X)).

The argument of the natural logarithm function must be greater
than zero. If you specify a value for the argument which is less than
or equal to zero, the message "BAD ARGUMENT" is displayed.

and the program stops running.

If you want to find the logarithm of a number in another base, B,
use this formula.

logs(X) =log(X)/log.(B)
For example, log,{3) =log.(3)/log.(10)

>NEW

>100 A=3.5
>110 PRINT LOGC(A);LOG(A*2)
>120 PRINT LOGC(EXP(2))
>130 STOP
>RUN
1.252762968 1.945910149
2.

*% DONE w»

>PRINT LOG(-3)

* BAD ARGUMENT

>PRINT LO6(3)/L06(10)
LA771212547

120

User's Raference Guide

COS — Cosine

COS(numeric-expression)

The cosine function gives you the cosine of the argument, x, where
x is an angle in radians. The argument is the value obtained when
the numeric-expression is evaluated. The normal rules for
evaluating numeric expressions (page 40) are used here. If the
angle is in degrees, multiply the degrees by 7/180 to get the
equivalent angle in radians. You may use (4 *ATN(1))/180 or
0.0174 5329251994 for m/180. Note that if you enter a value of x
where | x| = 1.5707963266375*10", the message "BAD
ARGUMENT" is displayed and the program stops running.

EXP — Exponential

EXP(numeric-expression)

The exponential function gives you the value of e*, where
e=2.718281828. The argument, x, is the value obtained when the
numeric-expression is evaluated. The normal rules for the
evaluation of numeric expressions (page 40) are used here. The

exponential function is the inverse of the natural logarithm function
(LOG), see page 120. Thus, X =EXP(LOG(X)).

Examples:

>NEW

>100
>110
>120
>130
>140
80)
>150
>RUN
.S
.5

A=1.047197551196

B=60
€=.01745329251994
PRINT COS(A);COS(B*C)

PRINT COS(B* (4*ATN(1))/1

END

.5

*% DONE **

>PRINT €0S(2.2E11)

* BAD ARGUMENT

>NEW

>100
>110
>120
>130
>140
>RUN

44,

A=3.79

PRINT EXP(A);EXP(9)
PRINT EXP(A*2)
PRINT EXP(LOG(2))
END

25640028 8103.083928

1958.628965

2

*k DONE wx=»

User's Reference Guide

119

RND — Random Number

RND

The random number function gives you the next pseudo-random
number in the current sequence of pseudo-random numbers. The
random number generated will be greater than or equal to zero and
less than one. The sequence of random numbers generated by the
random number function is the same every time the program is run
unless the RANDOMIZE statement (page 121) appears in the
program.

If you wish to obtain random integers between two values A and B
(A <B), inclusive, use this formula:

INT(B—A+1)*RND)+A

Examples:

>NEW

>100
>110
>120
>130
>RUN

Wso0n 0

FOR I=1 T0 5

PRINT INT(10%RND)+1
NEXT 1

END

x*k DONE *=%

>NEW

>100

REM RANDOM INTEGERS

BETWEEN 1 AND 20,INCLUSIVE

>110
>120
>130
>140
>150
>RUN
11
8
11
8
6

FOR I=1 TOD 5
C=INT(20*RND)+1
PRINT €

NEXT I

END

% DONE w*

122

User's Reference Guide

RANDOMIZE Statement

RANDOMIZE [seed!

The RANDOMIZE statement is used in conjunction with the
random number function (RND). When the RANDOMIZE
statement is not used, the random number function will generate
the same sequence of pseudo-random numbers each time the
program is run. When the RANDOMIZE statement is used without
a seed, a different and unpredictable sequence of random numbers
is generated by the random number function each time the program
is run. If you use the RANDOMIZE statement with a seed
specified, then the sequence of random numbers generated by the
random number function depends upon the value of the seed. If the
same seed is used each time the program is run, then the same
sequence of numbers is generated. If a different seed is used each
time the program is run, then a different sequence of numbers is
generated. The seed may be any numeric expression. The number
actually used for the seed is the first two bytes of the internal
representation of the number. (See Appendix, page 173 for a
complete explanation.) Thus, it is possible that the same sequence
of numbers may be generated even if you specify different seeds.
For example, RANDOMIZE 1000 and RANDOMIZE 1099 will
produce the same first two bytes internally and thus will produce
the same sequence of numbers. If the seed you specify is not an
integer, then the value used is INT (seed) (see the Integer Function,
page 120).

Examples:

>NEW

>100 RANDOMIZE 23

>110 FOR I=1 TO 5

>120 PRINT INT(10#RND)+1
>130 NEXT I

>140 STOP

>RUN

oo OO L & O

*kx DONE *x

User’s Refererce Guide

121

SQR — Square Root Function

SQR(numeric-expression)

The square root function gives you the positive square root of the
value specified by the argument. The argument is the value
obtained when the numeric-expression is evaluated. The normal
rules for the evaluation of numeric expressions (page 40) are used
here. SQR(x) is equivalent to x A(1/2). The value specified by the
argument may not be negative. If you specify a value for the
argument which is less than zero, then the message "BAD
ARGUMENT" is displayed and the program stops running.

TAN — Tangent

TAN(numeric-expression)

The tangent function gives you the tangent of the argument, x,
where x is an angle in radians. The argument is the value obtained
when the numeric-expression is evaluated. The normal rules for
evaluating numeric expressions (page 40) are used here. If the
angle is in degrees, multiply the degrees by 7/180 to get the
equivalent angle in radians. You may use (4 *ATN(1))/180 or
0.01745329251994 for n/180. Note that if you enter a value of x
where | x | = 1.5707963266375*10"", the message "BAD
ARGUMENT"” is displayed and the program stops running.

Examples:

>NEW

>100 PRINT SQR(4);47(1/2)
>110 PRINT $QrR(10)
>120 END
>RUN
2 2
3.16227766

*#% DONE #»w

>PRINT SQR(-5)

* BAD ARGUMENT

>NEW

>100 A=.7853981633973
>110 B=45
>120 €=,01745329251994
>130 PRINT TAN(A) ;TAN(B*(C)
>140 PRINT TAN(B*#(4*ATN(1)) /1
80)
>150 END
>RUN
1. 1.
1

*% DONE w»+

>PRINT TAN(1_.76E10)

* BAD ARGUMENT

124

Uner s Reforsace Gude

SGN — Signum (Sign)

SGN(numeric-expression)

The signum function gives you the algebraic sign of the value
specified by the argument. The argument is the value obtained
when the numeric-expression is evaluated. The normal rules for the
evaluation of numeric expressions (page 40) are used here. The
signum function gives different values depending on the value of the
argument. These values are given here. For argument, X:

BX<0.SGN(X)= -1
®mX =0, SGN(X)=0
mX >0 SGN(X)=1

SIN — Sine

SIN(numeric-expression)

The sine function gives you the sine of the argument, x, where x is
an angle in radians. The argument is the value obtained when the
numeric-expression is evaluated. The normal rules for evaluating
numeric expressions (page 40) are used here. If the angle is in
degrees, simply multiply the degrees by 7/180 to get the equivalent
angle in radians. You may use (4 *ATN(1))/180 or
0.0174532925194 4 for n/180. Note that if you enter a value of x
where | x | = 1.5707963266375* 10, the message "BAD
ARGUMENT" is displayed and the program stops running.

Examples:

>NEW

>100 A==-23.7

>110 B=6

>120 PRINT SGN(A);SGN(0);SGN(
8)

>130 PRINT SGN(-3%3);SGN(B*2)

>140 END
>RUN

-1 0 1
-1 1

*% DONE *=*

>NEW

>100 A=.5235987755982
>110 B=30
>120 C=.01745329251994%
>130 PRINT SINCA);SIN(B*(C)
>140 PRINT SIN(B*(4*ATN(1))/1
80)
>150 END
>RUN
.5 .5
.5

4% DONE *%

>PRINT SIN(1.9E12)

* BAD ARGUMENT

User's Reference Guide

123

ASC — ASCII Value

ASC(string-expression)

The ASCII value function will give you the ASCII character code
which corresponds to the first character of the string specified by
the string-expression (see page 43). A list of the ASCII character
codes for each character in the standard character set is given on
page 163. The ASCII value function is the inverse of the character
function (CHR$), see below.

CHR$ — Character

CHRS$(numeric-expression)

The character function gives you the character corresponding to the
ASCII character code specified in the argument. The argument is
the value obtained when the numeric-expression is evaluated. The
normal rules for the evaluation of numeric expressions (page 40)
are used here. The character function is the inverse of the ASCII
value function (ASC), see above. If the argument specified is not

an integer, then it is rounded to obtain an integer. A list of the
ASCII character codes for each character in the standard character
set is given on page 163. If the argument specified is a value
between 32 and 95, inclusive, then a standard character is given. If
the argument specified is between 96 and 159, inclusive, and a
special graphics character has been defined for that value, then the
graphics character is given. If you specify an argument which
designates an undefined character (i.e., not a standard character or
a defined graphics character), then the character given is whatever
is in memory at that time.

If you specify a value for the argument which is less than zero or
greater than 32767, the message "BAD VALUE" is displayed, and

the program stops running.

Examples:

>NEW

>100 AS="HELLO"

>110 C$="JACK SPRAT”

>120 C=ASC(CS)

>130 B$="THE ASCII VALUE OFfF "

>140 PRINT BS;"H IS";A8C(AS)

>150 PRINT BS$;"J IS";C

>160 PRINT BS$;"N IS";ASC("NANM
E")

>170 PRINT BS;"1 IS”;ASC("1")

>180 PRINT CHRS(ASC(AS))

>190 END

>RUN
THE ASCII VALUE OF H IS 72
THE ASCII VALUE OF J IS 74
THE ASCII VALUE OF N 1S 78
THE ASCII VALUE OF 1 IS 49
H

*%x DONE #w

>NEW

>100 AS=CHRS(72)ECHRS(73)&CHR
$(33)
>110 PRINT AS
>120 CALL CHAR(97,"0103070F1F
3FTFFF")
>130 PRINT CHRS$(32);CHRS(97)
>140 PRINT CHRS(3+#14)
>150 PRINT CHRS(ASC("+"))
>160 END
>RUN
HI!

*
+

*% DONE ##
>PRINT CHR$(33010)

* BAD VALUE

126

User's Refarence Guide

Built-In String Functions

‘Introduction

In addition to the built-in numeric functions, many other functions
are built into TI BASIC. The functions discussed in this section are
called stning functions. String functions either use a string in some
way to produce a numeric result. or the result of the evaluation of
the function is a string. As you use your computer, you will find
many ways to use the string functions described here. You can also
define your own string functions (see User-Defined Functions, page
130). Note that any string function with a name that ends with a

dollar sign (e.g. CHRS$) always gives a string result and cannot be
used 1n numeric expressions.

User's Reference Guide 125

SEGS — String Segment

SEGS$(string-expression, numeric-expressionl,numeric-expression2)

The string segment function gives you a portion (substring) of the
string designated by the string-expression. Numeric-expressionl
identifies the position of the character in the original string which is
the first character of the substring. The position of the first
character in the string specified is position one. The length of the
substring is specified by numeric-expression?. The normal rules for
the evaluation of numeric expressions (page 40) and string
expressions (page 43) are used here.

For this discussion, A$ is used for string-expression, X is used for
numeric-expressionl and Y is used for numeric-expression2. If you
specify a value for X which is greater than the length of A$ (line
110) or a value of zero for Y (line 120), then you are given the null
string. If you specify a value for Y which is greater than the
remaining length in A§ starting at the position specified by X (line
130), then you are given the rest of A$ starting at the position
specified by X.

If you specify a value for X which is less than or equal to zero, and/
or specify a value for Y which is less than zero, then the message
"BAD VALUE" is displayed and the program stops running.

Examples:

>NEW

>100 MSGS="HELLO THERE! HOW A
RE YOU?"

>110 REM SUBSTRING BEGINS IN
POSITION 14 AND HAS A LENGTH
0f 12.

>120 PRINT SEGS$(MSGS,14,12)

>130 END

>RUN

HOW ARE YOU?

** DONE #=

>NEW
>100 MSG$="1 AM A COMPUTER."
>110 PRINT SEG$(MSGS,20,1)
>120 PRINT SEG$(MSGS,10,0)
>130 PRINT SEG$(MSGS,8,20)
>140 END
>RUN

COMPUTER.

% DONE #*w

>PRINT SEGS(MSGS,-1,10)

* BAD VALUE

128

User's Relference Guide

LEN — Length

LEN(string-expression)

The length function gives you the number of characters in the string

specified by the argument. The argument is the string value

obtained when the string-expression is evaluated. The normal rules
for the evaluation of string expressions (page 43) are used here. The
length of a null string is zero. Remember that a space is a character

and counts as part of the length.

POS — Position

POS(string-1,string-2, numeric-expression)

The position function finds the first occurrence of string-2 within
string-1. Both string-1 and string-2 are string expressions. The
numeric-expression is evaluated and rounded, if necessary, to
obtain an integer, n. The normal rules for the evaluation of string
expressions (page 43) and numeric expressions (page 40) are
used here. The search for string-2 begins at the nth character of
string- 1. If string-2 is found, then the character position within
string-1 of the first character of string-2 is given. If string-2 is not
found, then a value of zero is given. The position of the first
character in string-/ is position one. If you specify a value for n
which is greater than the number of characters in string-/, then a
value of zero is given. If the value specified for n is less than zero,
the message "BAD VALUE" is displayed and the program stops
running.

>NEW

>100 NAMES='CATHY"

>110 CITY$S="NEW YORK"

>120 MSGS="HELLO "G"THERE!”
>130 PRINT NAMES;LEN(NAMES)
>140 PRINT CITYS;LEN(CITYS)
>150 PRINT MSGS;LEN(MSGS)
>160 PRINT LEN(NAMESSCITYS)
>170 PRINT LEN("HI!")

>180 STOP
>RUN
CATHY §

NEW YORK 8
HELLO THERE! 12
13
3

#« DONE w+

>NEW

>100 MSGS="HELLO THERE!' HOW A
RE YOU?"
>110 PRINT "H";POS(MSGS,"H",1
)
5120 C$s"RE"
>130 PRINT C$;POS(M56S,CS,1);
POS (MSGS,CS,12)
>140 PRINT “HI";POS(MEGS, " "HI"

,1)
>150 END
>RUN

W

RE 10 19
HI 0

es DONE se

User’s Reference Guide

127

User-Defined Functions

Introduction

In addition to the built-in functions described in the two previous
sections, TI BASIC provides user-defined functions. User-defined
functions can simplify programming by avoiding repeated use of
complicated expressions. Once a function has been defined using
the DEF statement, it may be used anywhere in the program by
referencing the name you gave to the function.

130 User s Reference Guide

STRS — String-Number

STRS$(numeric-expression)

The string-number function converts the number specified by the
argument into a string. The argument is the value obtained when
the numeric-expression is evaluated. The normal rules for the
evaluation of numeric expressions (page 40) are used here. When
the number is converted into a string, the string is a valid
representation of a numeric constant with no leading or trailing
spaces. For example. if B=69.5, then STRS (B) is the string "69.5."
Only string operations may be performed on the strings created
using the string-number function. The string-number function is the
inverse of the value function (VAL): see below. In the example,

note that leading and trailing spaces are not present on the numbers
converted to strings.

VAL — Value

VAL(string-expression)

The value function is the inverse of the string-number function
(STRS). see above. If the string specified by the string-

expression is a valid representation of a numeric constant. then the
value function converts the string to a numeric constant. For
example. if A$ ="1234", then VAL(A$) =1234. The normal rules
for the evaluation of string expressions (page 43) are used here. If
the string specified is not a valid representation of a number or if
the string is of zero length, then the message "BAD ARGUMENT"™
is displayed and the program stops running. If you specify a string
which is longer than 254 characters, the message "BAD
ARGUMENT" is displayed and the program stops running.

Examples:

>NEW

>100
>110
>120
>130
>140
>RUN

=-26.3

PRINT STRSCA);" ";A
PRINT 15.7;STR$(15.7)
PRINT STRS(VAL("34.8"))

END

-26.3 -26.3
15.7 15.7
34.8

#% DONE *#

>NEW

>100
>110
>120
>130
>140
>150
>160
>RUN

23.6 -4.7
52.

P$="23.6"
N$="-4.7"

PRINT
PRINT
PRINT
PRINT
END

5

=4 . 7E+12

23.6

*x DONE =**

VAL(P$) ;VAL(NS)
VAL("52"8&".5")
VAL(NSE"E"E&"12™)
STR$(VAL(PS))

User's Reference Guide

129

DEF

The parameter used in the DEF statement is local to the DEF
statement in which it is used. This means that it is distinct from any
variable with the same name which is used in other statements in

the program. Thus, evaluating the function does not affect the value
of a variable which has the same name as the parameter.

A DEF statement is only performed when the function it defines is
referenced in an expression. When the computer encounters a DEF
statement while running a program, it takes no action but proceeds
to the next statement. A DEF statement may appear anywhere in a
program and need not logically precede a reference to the function,
but the function definition must have a lower line number than any
statement which references the function. A DEF statement can
reference other defined functions (line 170).

In a DEF statement, the function you specify may not reference
itself either directly (e.g. DEF B =B=*2) or indirectly (e.g. DEF

F =G; DEF G =F).The parameter you specify may not be used as
an array. You can use an array element in a function definition as
long as the array does not have the same name as the parameter.

Examples:
>NEV

>100 DEF FUNC(A)=A*(A+B8-5)
>110 A=6.9
>120 B=13
>130 PRINT “B= ";B:"FUNC(I)=
";FUNC(3):"A= “;A
>140 END
>RUN

B= 13

FUNC(3)= 33

A= 6.9

% DONE *w

>NEW

>100 REM FIND F'(X) USING
NUMERICAL APPROXIMATION
>110 INPUT "X=7? ™":X
>120 IF ABS(X)>.01 THEN 150
>130 H=.00001
>140 6070 180
>150 H=.001*ABS(X)
>160 DEF F(Z)=3%ZA3-2%72+1
>170 DEF DER(X)=(F(X+H)-F(X-H
))/(2#%H)
>180 PRINT "F'(";STRS(X);")=
*;DER(X)
>190 END
>RUN
x=? .1
F'(.1)= -1.90999997

*% DONE *#

>NEW
>100 DEF GX(X)=6X(2)%X
>110 PRINT 6X(3)
>120 END
>RUN
* MEMORY FULL IN 110

>100 DEF GX(A)I=A(3)A2
>RUN

* NAME CONFLICT IN 100

132

User’s Reference Guide

DEFine

DEF S numeric-function-name | (parameter)| = numeric-expression L

| string-function-name |(parameter)l = string-expression J
The DEFine statement allows you to define your own functions to
use within a program. The function-name you specify may be any
valid variable name (see page 39). If you specify a parameter
following the function-name, the parameter must be enclosed in
parentheses and may be any valid variable name. Note that if the
expression you specify evaluates to a string result, the function-
name you use must be a string variable name (i.e., the last character
must be a dollar sign, §).

The DEFine statement specifies the function to be used based upon
the parameter (if specified), variables, constants, and other built-in
functions. Once a function has been defined, you may use the
function in any string or numeric expression by entering the
function-name. The function-name must be followed by an argument
enclosed in parentheses if a parameter was specified in the DEF
statement. If a function has no parameter specified, when a
reference to the function is encountered in an expression, the
function is evaluated using the current values of the variables which
appear in the DEF statement.

If you specify a parameter for a function, when a reference to the
function is encountered in an expression, the argument is evaluated
and its value is assigned to the parameter. The expression in the
DEF statement is then evaluated using the newly assigned value of
the parameter and the current values of the other variables in the
DEF statement.

Examples:

>NEW

>100 DEF PI=4*ATN(1)
>110 PRINT COS(60*PI/180)
>120 END
>RUN
.5

*%x DONE *x

>NEW

>100 REM EVALUATE Y=X*(X-3)

>110 DEF Y=X*(X-3)
>120 PRINT " X Y"
>130 FOR X=-2 TO 5
>140 PRINT X+Y
>150 NEXT X

>160 END
>RUN
X Y
-2 10
-1 4
0 0
1 =2
2 -2
3 0
4 4
5 10
*% DONE *=*
>NEW

>100 REM TAKE A NAME AND
PRINT IT BACKWARDS

>110 DEF BACKS(X)=SEGS(NAMES,

X,1)

>120 INPUT "NAME? ":NAMES
>130 FOR I=LENC(NAMES) TO 1
EP -1

>140 BNAMES=BNAMESEBACKS (I)
>150 NEXT I

>160 PRINT NAMES:BNAMES
>170 END

>RUN

NAME? ROBOT

ROBOT

TOBOR

*% DONE =%

ST

User's Reference Guide

131

Arrays

Introduction

An array is a collection of variables arranged in a way that allows
you to use them easily in a computer program. The most common
way of grouping variables is in a list, which is called a one-
dimensional array. Each variable in the list is called an element of
the array. The length of the list is limited only by the amount of
memory available.

By using the array capability of TI BASIC you can do many things
with a list — you can print the elements forward or backward,
rearrange them, add them together, multiply them, or select certain
ones for processing.

In TI BASIC an array may begin with element O or element 1. By
using the OPTION BASE statement, you control which beginning
element the computer establishes (see page 138). For consistency in
describing arrays, we are assuming that the first element in each
array is element 1.

Let's say you want to use the computer to take two lists of four
numbers and print all possible combinations of the numbers in both
lists. You might call the first array X and the second one Y. Since X
and Y name a collection of numbers, rather than a single variable,
the computer needs a way to refer to the individual elements in
each array. You must supply a pointer, called a subscript, to the
particular element in the array you want the computer to use. This
subscript is enclosed in parentheses and always immediately
follows the name of the array. The subscript may be explicit, such
as X(3), which refers to the third element in list X, or it may be a
variable, as in X(T), where the value of T points to the proper
element. In any case, the subscript is always either a positive
integer or zero.

The program on the right pairs the numbers in array X and array
Y. Notice that by using the array technique only a few program lines
are needed for this relatively complex procedure.

Muliti-Dimensional Arrays

With TI BASIC you can extend your use of arrays to include
tabular information, arranged in rows and columns, called two-
dimensional arrays. You can think of the TIC-TAC-TOE game as
an example of a two-dimensional array.

X[0/X
oX|X
Xl0olOo

Examples:

>NEW

>100 REM THIS PROGRAM PAIRS
TWO LISTS

>110 REM LINES 120 TO 150
ASSIGN VALUES TO LIST X

>120 FOR T=1 TO 4

>130 READ X(T)

>140 NEXT T

>150 DATA 1,3,5,7

>160 REM LINES 170 TO 200
ASSIGN VALUES TO LIST Y
>170 FOR S=1 TO 4

>180 READ Y(S)

>190 NEXT S

>200 DATA 2,4,6,8

>210 REM LINES 220 TO 270
PAIR THE LISTS AND PRINT
THE COMBINATIONS

>220 FOR T=1 TO 4

>230 FOR S=1 TO &

>240 PRINT X(T);Y(S);" *;
5250 NEXT S

>260 PRINT

>270 NEXT T

>280 END

>RUN

1 2 1 4 1 6 1 8
3 2 3 4 3 6 3 8
5 2 5 4 S5 6 5 8
7 2 7 4 7 & 7 8
% DONE =«

134

User's Reference Guise

b e e e

H you specify a parameter when defining a function, you must
specify an argument when you reference the function. Similarly, if
you do not specify a parameter when defining a function, you cannot
specify an argument in the function reference.

Examples:

>NEW

>100 DEF SQUARE(X)=X*X
>110 PRINT SQUARE

>120 END

>RUN

* NAME CONFLICT IN 110
>100 DEF PI=3.1416
>110 PRINT PI(2)
>RUN

* NAME CONFLICT IN 110

{User's Reference Guide

133

DiMension

DIM {array-name (integerl| ,integerQII,integer3l)},. ..

The DIMension statement reserves space for both numeric and
string arrays. You can explicitly dimension an array only once in
your program. If you dimension an array, the DIM statement must
appear in the program before any other reference to the array. If
you dimension more than one array in a single DIM statement, the
array names must be separated by commas. The array-name may
be any valid variable name.

You may use one, two, or three-dimensional arrays in TI BASIC
(see page 134 for an explanation of arrays and their uses). The
number of values in parentheses following the array name tells the
computer how many dimensions the array has.

One-dimensional arrays have only one integer value following their
name. Two-dimensional arrays are described with two integer
values which define the number of rows and columns. Three-
dimensional arrays have three integer values defining their
characteristics.

B DIM A(6) — describes a one-dimensional array.
B DIM A(12.3) — describes a two-dimensional array.
B DIM A(5,2,11) — describes a three-dimensional array.

If an array is not dimensioned in a DIM statement, the computer
will automatically assign a value of 10 for integer! (and a value of
10 for integer2 and integer3 if needed) for each array used.

Space is allocated for your array after you enter the RUN command
but before the program is actually run. Each element in a string
array, however, is a null string until you actually place values in
each element. If your computer memory cannot handle an array
with the dimensions you specified, you will get a "MEMORY
FULL" message and your program will not run.

Examples:

>DIM AC12),B(5)

>NEW

>100 pIM X(15)
>110 FOR I=1 TO 15
>120 READ X(I)

>130 NEXT 1

>140 REM PRINT LOOP
>150 FOR I=15 T0 1 STEP -1
>160 PRINT X(I);

>170 NEXT 1
>180 DATA 1,2,3,4,5,6,7,8,9,1
0,11,12,13,14,15
>190 END
>RUN
15 14 13 12 11 10 9
8 7 6 5 4 3 2 1
*x DONE w»«

136

User's Reforence Gusde

Arrays

You can represent the gameboard with this array:
T(1.1) | T(1,2) | T(1.3)

T(2,1) | T(2,2) | T(2.3)
T(3.1) | T(3,2) | T(3,3)

As in the one-dimensional arrays described earlier, you refer to a
two-dimensional element with a subscript, in this case a double-
subscript to refer to the row and column location. Often you will
use a variable as a subscript, rather than an explicit subscript; for
example T(R,C).

When you use a two-dimensional array, you will often use nested
FOR-NEXT loops. One loop will take the computer through the
rows and the other will take it through the columns. The program
on the right creates a two-dimensional array — a multiplication
table — with five rows and five columns, using nested FOR-NEXT

You can work with arrays of one, two, or three dimensions on your

TI Home Computer. Elements in three-dimensional arrays are
referenced with three subscript values: X(22,14,7) or M(I,],K).

>NEW
>100
>110

>120
>130

REM MULTIPLICATION TABLE

CALL CLEAR
CALL CHAR(96,"FF™)
CALL CHAR(97,"8080808080

go8080")

>140

CALL CHAR(98,'"FF80808080

808080")

>150
>160
>170
>180
>190
>200
>210
>220
>230
>240
>250
>260
>270

FOR A=1 TO 5

FOR B=1 TO 5
M(A,B)=A*B

NEXT B

NEXT A

FOR A=1 TO 5

FOR B=1 TO 5
PRINT M(A,B);

IF B<>1 THEN 250
PRINT CHRS$(97);" ";
NEXT B

PRINT

REM THE FOLLOWING

STATEMENTS PRINT THE LINES
DEFINING THE TABLE

>280
>290
>300
>310
>320
>330
>340
>RUN

IF A<>1 THEN 330

PRINT

CALL HCHAR(23,3,96,3)
CALL HCHAR(23,6,98)
CALL HCHAR(23,7,96,16)
NEXT A

END

-= screen clears

112 3 4 5

2 |4 6 8 10
306 9 12 15

4| 8 12 16 20
s | 10 15 20 25
*% DONE #w

User’s Reference Guide

135

OPTION BASE

0
OPTION BASE {1 }

The OPTION BASE statement allows you to set the lower limit of
array subscripts at one instead of zero. You can omit the OPTION

BASE statement if you want the lower limit of the subscripts to be
zero.

If you include an OPTION BASE statement in your program, you
must give it a lower line number than any DIMension statement
(see page 136) or any reference to an element in any array. You may
have only one OPTION BASE statement in a program, and it
applies to al/l array subscripts in your program. Therefore, you
cannot have one array subscript beginning with O and another
beginning with 1 in the same program.

If you use some integer other than one or zero in the OPTION
BASE statement, the computer will stop the program and print
“INCORRECT STATEMENT."

Examples:

>NEW

>100 OPTION BASE 1
>110 DIM X(5,5,5)
>120 X(1,0,1)=3
>130 PRINT X(1,0,1)

>140 END
>RUN

* BAD SUBSCRIPT IN 120

>100 ENTER
>RUN
3

% DONE *w

138

—

Subscripting An Array

Aaytime you want to reference an array in your program, you must
be specific about which element in the array you want the computer
o use. To do this, you point to the element with a subscript.
Subscripts are enclosed in parentheses immediately following the
aame of the array. A subscript can be any valid numeric expression
which evaluates to a non-negative result. This result will be
rounded to the nearest integer, if necessary.

The number of elements reserved for an array determines the
maximum value of each subscript for that array. If you are using an
asray not defined in a DIMension statement, the maximum value of
each subscript is 10. The minimum value is zero, unless an
OPTION BASE statement (see page 138) sets the minimum
subscript value at 1. Thus, an array defined as DIM A(6) actually
has seven accessible elements in TI BASIC, unless the zero
subscript is eliminated by the OPTION BASE 1 statement.

The example on the right assumes that the array begins with
element 1 (OPTION BASE 1 on line 120):

B line 130 — This line defines T as a one-dimensional array
with 25 elements.

B line 160 — The numeric variable I here subscripts T.
Whatever value I contains at this time will be used to point
to an element of T. If I =3, the third element of T will be
added.

8 line 200 — The subscript 14 tells the computer to print the
fourteenth element of T.

@ line 220 — The computer will evaluate the numeric
expression N +2. If N =15 at this time, the seventeenth
element of T will be printed.

If you access an array with a subscript greater than the maximum
number of elements defined for that array, or if your subscript has a
zero value and you used an OPTION BASE 1 statement, a "BAD
SUBSCRIPT" message will print and the program will end.

(See page 135 for subscripting multi-dimensional arrays.)

Examples:

>NEW

>100 REM DEMO OF DIM AND
SUBSCRIPTS
>110 s=100
>120 OPTION BASE 1
>130 DIM T(295)
>140 FOR I=1 TO 25
>150 READ T(I)
>160 A=S+T(I)
>170 PRINT A;
>180 NEXT 1
>190 PRINT::
>200 PRINT T(14)
>210 INPUT "ENTER A NUMBER BE
TWEEN 1 AND 23:":N
>220 PRINT T(N+2)
>230 DATA 12,13,43,45,65,76,7
8,98,56,34,23,21,100,333,222
L111,444,666,543,234,89,765,
90,101,345
>240 END
>RUN
112 113 143 145 165
176 178 198 156 134
123 121 200 443 322
211 544 766 643 334
189 865 190 201 445

333

ENTER A NUMBER BETWEEN 1 AND
23:14
1M

*% DONE #+

User's Reference Guide

137

GOSUB

8858%BB] line-number

The GOSUB statement is used with the RETURN statement (see
page 142) to allow you to transfer the program to a subroutine,
complete the steps in the subroutine, and return to the next
program line following the GOSUB statement. When the computer
performs the GOSUB statement, it saves the next line number of
the main program so that it can return to that point when it
encounters a RETURN statement in the subroutine.

(The space between GO and SUB is optional.)

>NEW

>100 REM BUILD AN ARRAY,
MULTIPLY EACH ELEMENT BY 3,
PRINT BOTH ARRAYS

>110 FOR X=1 70 4

>120 FOR Y=1 70 7

>130 I(X,Y)SINT(30*RND)*1

>140 NEXT Y

>150 NEXT X

>160 PRINT "FIRST ARRAY™:

>170 60SUP 260

>180 FOR Xx=1 T0 4

>190 FOR Y=1 T0 7

>200 I(X,Y)a3+1(X,Y)

>210 NEXT Y

>220 NEXT X

>230 PRINT 3 TIMES VALUES IN
FIRST ARRAY"::

>240 60SUB 260

>250 STOP

>260 REM SUBROUTINE TO PRINT
ARRAY

>270 FOR X=1 T0 4

>280 FOR Y=1 70 7

>290 PRINT I(X,Y);

>300 NEXT Y

>310 PRINT

>320 NEXT X

>330 PRINT

>340 RETURN

>RUN
FIRST ARRAY

16 12 17 12 8 17 8
18 22 1 29 16 114 11
5 25 22 4 24 11 24
26 21 18 2 12 20 15

3 TINES VALUES IN FIRST ARRA
Y

48 36 51 36 24 351 24
54 66 3 87 48 42 33
13 75 66 12 72 33 72
78 63 S4 6 386 60 4SS

»o DONE »+

140

Uner's Rebaranss Guide

Subroutines

imtroduction

Subroutines may be thought of as separate self-contained programs
within a main program. They usually perform a certain action, such
as printing some information, performing a calculation, or reading
values into an array. Putting these actions into a subroutine allows
you to type that set of statements only once and then perform that
set of statements from anywhere in the program with a GOSUB
statement (see page 140).

The GOSUB statement initially behaves like a GOTO statement. It
causes the computer to jump to the /ine-number listed. However.
subroutine programming gives the computer the capability to
“remember” where the branch occurred in the main program and
return to that point when it finishes the subroutine. This technique
requires that the last statement in the subroutine be a RETURN
statement (see page 142). The program will normally have either a
STOP statement or some other unconditional branching statement
immediately before the subroutines so that the computer won't
accidentally "fall into™ the subroutines. The subroutines should be
entered only by a GOSUB instruction and may be entered at any
line-number within the subroutine.

The example on the right illustrates how the GOSUB and
RETURN statements might be arranged in your program. The
program begins running at line 100. At line 300 it skips to the first

subroutine, performs lines 700 through 780. and returns to line 310.

When it reaches line 400, it goes to the second subroutine, performs
lines 900 through 980, returns to line 410, and continues running.
At line 450 it again goes to subroutine 1, this time entering at line
750 and continuing to the RETURN. Then it goes back to the
main program at line 460 and continues running. At line 480 it
again jumps to the first subroutine, runs lines 700 through 780.
returns to line 490, then stops running at line 600. The STOP
statement in line 600 keeps the computer from performing the
subroutines unless you specifically direct it there with a GOSUB.

Examples:

>NEW

>100

>300

REM MAIN PROGRAM

c0suB 700

>310 .

>400
>410

>450
>460

>480
>490

>600
>700

GOsuB 900

60suB 750
60suB 700

sTOP
REM SUBROUTINE1

>750 .

>780
>900

>980
>990

RETURN
REM SUBROUTINEZ

RETURN
END

User’s Reference Guide

139

RETURN

RETURN

The RETURN statement is used with the GOSUB statement (see
page 140) to provide a branch and return structure for TI BASIC.
Whenever the computer encounters a RETURN statement, it takes
the program back to the program line immediately following the
GOSUB statement that transferred the computer to that particular
subroutine in the first place. You can easily develop programs with
subroutines which jump to other subroutines and back again, if you
are careful that each GOSUB leads the computer to a RETURN
statement (see page141 for example).

If, when running a program, the computer encounters a RETURN
statement before performing a GOSUB instruction, the program
will terminate with the message “"CAN'T DO THAT.”

Examples:

>NEW

>100 FOR I=1 70 3
>110 60suB 150

>120 PRINT "I=";I
>130 NEXT I

>140 STOP

>150 REM SUBROUTINE
>160 FOR X=1 TO 2
>170 PRINT "X=";X
>180 NEXT X

>190 RETURN

>RUN
X=
X=
1=
X=
X=
I=
X=
X=
1=

WN NN =N =

**% DONE #x

142

i

Within a subroutine, you may want the computer to jump to another
subroutine, complete it, come back to the first subroutine, complete
its steps, then return to the main program at the point where the
original branch occurred. You can do this easily with the proper
pairing of GOSUB and RETURN statements. However, be sure
you exercise care in designing subroutines so that the computer will
not “lose its place.”

Ia the example on the right, the main program jumps to subroutine
1 when it reaches line 500. In subroutine 1, when the program
reaches line 730, it goes to subroutine 2. When the RETURN in
subroutine 2 is encountered (line 850), the computer returns to
subroutine 1 at line 740, finishes the subroutine, returns to the main
program and completes it through line 600.

If the GOSUB statement transfers the program to a /ine-number not
in the program, the program will end and the message "BAD LINE
NUMBER"™ will print. If the GOSUB transfers the program to its
own /ine-number, the program will stop and the message
"MEMORY FULL" will print.

Examples:

>NEW

>100
>110

>500

REM NESTED SUBROUTINES

REM MAIN PROGRAM

GOSUB 700

>510 .

>600
>700

>730

STOP
REM SUBROUTINE?

60suB 800

>740 .

>790
>800

>850

>NEW

>100
>110
>120
>130
>140
>150
>160
>170
>RUN

RETURN
REM SUBROUTINEZ2

RETURN

X=12

Y=23

G0suB 120
PRINT Z

sTOP

REM SUBROUTINE
1=X+Y*120/5
RETURN

* MEMORY FULL IN 120

>120
>RUN

564

G0suB 150

** DONE =

141

File Processing

Introduction

Your TI Home Computer has the capability to store both programs
and data on accessory devices. You can later load and use these
files with your computer as often as you wish, and delete them
when you no longer need them.

The file processing capability of your computer offers you a
powerful programming tool. You can eliminate retyping your
favorite programs, save important information, and create
procedures to update data important to you. TI BASIC provides an
extensive range of file-processing features, including sequential and
random file organization and processing, fixed and variable length
records, and display and internal formats for data. This section
describes the TI BASIC statements which use these features —
OPEN, CLOSE, INPUT, PRINT, and RESTORE. As new
accessory devices become available, the file features they use will
be described in the accompanying manuals.

Audio Cassette Tape Recorders

Your T1 Home Computer can process files from either one or two
standard audio cassette tape recorders (see pages 15-16 of this book
for instructions on attaching the recorders). These recorders are
designated as CS1 and CS2. To save and/or load programs you
need only one recorder. To read data from a file, process it in your
program, and at the same time create a new data file, you will need
two recorders — one to read the stored data and one to write the
processed data.

Specific requirements for using file processing features with
cassette recorders are given at the end of each statement
description.

144

ON-GOSUB

ON numeric-expression |GOSUB | line-number|,line-numberl . . . Examples:
GO SUB
The ON-GOSUB statement is used with the RETURN statement >NEW
(see page 142) to tell the computer to perform one of several >100 INPUT "CODE=7":CODE
subroutines, depending on the value of a numeric-expression, and >110 IF CODE=8 T;'E': 2 :guas
: >120 INPUT "HOURS=?":
then go back to the main program sequence. >130 ON CODE GOSUB 170,200,23
The computer first evaluates the numeric-expression and converts >(1’ A g 62A Y=RATE*HOURS+BASEPAY
the result to an integer, rounding if necessary. This integer tells the >150 PRINT "PAY IS S$";PAY
program which subroutine /ine-number in the ON-GOSUB ;]I gg :212_;020
statement to perform next. If the value of the numeric-expression 5180 BASEPAY=S
is 1, the computer will proceed to the first /ine-number listed in the >190 RETURN
ON-GOSUB statement. If the value is 2, the computer will branch < g?g : :;E::;Egs
to the second line-number given, and so on. 5220 RETURN
.. : : : >230 RATE=10
Additionally the computer will save the next line number following >240 BASEPAY=50
the ON-GOSUB statement and return to this point after performing >250 RETURN
the subroutine. The subroutine must contain a RETURN ;ggg g:;g;i? =100
statement to signal the computer to go back to the saved line >280 RETURN
number and continue the program from that statement. Otherwise, :232 END
the program will continue until it reaches the end, as if a GOTO §ODE=? 4
was performed instead of a GOSUB. HOURS=740
PAY IS $ 1100
CODE=?2
HOURS=237
PAY IS $ 182.25
CODE=23
HOURS=735.75
PAY IS $ 407.5
CODE="1
HOURS=740
PAY IS $ 129
CODE=29
% DONE #»
If the rounded value of the numeric-expression is less than 1 or >RUN L,
greater than the number of line numbers in the ON-GOSUB ﬁgﬁ:;;f 40
statement, the program will terminate with the message "BAD
VALUE IN xx.” * BAD VALUE IN 130
If the line-number listed is not a valid program line, the message >130 ON CODE GOSUB 170,200,23
“BAD LINE NUMBER" will print when you perform the >263°°
statement. CODE=74
HOURS=?40

* BAD LINE NUMBER IN 130

User's Reference Guide 143

OPEN

As gdditional accessory devices become available, you will find Examples:
their file-names included in the manuals which accompany them.

W file-organization — Files used in TI BASIC can be organized >100 OPEN #4:"C$2",0UTPUT, INT
either sequentially or randomly. Records on a sequential file are ERNAL, SEQUENTIAL, FIXEO
read or written one after the other in sequence from beginning to
end. Random-access files (called RELATIVE in TI BASIC) can
be read or written in any record order. They may also be
processed sequentially.

To indicate which logical structure a file has, enter either >120 OPEN #12:NAMES, RELATIVE
SEQUENTIAL or RELATIVE in the OPEN statement. You 20, INPUT, FIXED, INTERNAL
may optionally specify the initial number of records on a file by
following the word SEQUENTIAL or RELATIVE with a

Numeric expression.

If you omit the file-organization specification, the computer will >100 OPEN #10:"CS1",0UTPUT,FI
assume SEQUENTIAL organization. XED
(computer assumes SEQUENTIAL,
DISPLAY,PERMANENT)

B file-type — This specification designates the format of the data
stored on the file: DISPLAY or INTERNAL.

The DISPLAY-type format refers to printable (ASCII)
characters. The DISPLAY format is normally used when the
output will be read by people, rather than by the computer. Each
DISPLAY -type record usually corresponds to one print line.

INTERNAL-type data is recorded in internal machine format
which has not been translated into printable characters. Data in
this form can be read easily by the computer but not by people.
(See page 152 for a full explanation of how data is stored
internally.)

You will find that the INTERNAL format is more efficient for
recording data on a storage device such as a cassette tape. It
requires less space and is easier to format with a PRINT
statement (see page 157 for directions on formatting PRINT
statements for INTERNAL-type records and page 159 for
DISPLAY -type records). Because the computer uses
INTERNAL -type data internally, a program runs in less time
when your data files are in INTERNAL format. The computer
won't have to convert DISPLAY characters into INTERNAL

format and back again.

If this specification is omitted, the computer assumes DISPLAY
format.

146 User's Reforence Guide

OPEN

OPEN #file-number:file-namel, file-organizationll file-typell,open-modell ,record-typell ,file-lifel

The OPEN statement prepares a BASIC program to use data files
stored on accessory devices. The OPEN statement does this by
providing the necessary link between a file-number used in your

program and the particular accessory device on which the file is
located.

The OPEN statement describes a file's characteristics to the
computer so that your program can process it or create it. With
some accessory devices the computer will check that the file or
device characteristics match the information specified in the OPEN
statement for that file. If they don't match or the computer cannot
find or create the file, the file will not be opened and an 1/0 error
message will be printed (see error message table, page 171).

The file-number and file-name must be included in the OPEN
statement. The other information can be included in any order or
can be omitted. If you leave out any specification, the computer will
assume certain standard characteristics for the file, called
“defaults,” as described later in this section.

B file-number — All TI BASIC statements which refer to files do so
by means of a file-number between 0 and 255 inclusive. The file-
number is assigned to a particular file by the OPEN statement.
Since file-number 0O refers to the keyboard and screen of your
computer and is always accessible, you cannot open or close file-
number 0 in your program statements. You may assign the other
numbers as you wish, as long as each open file in your program
has a different number.

The file-number is entered as the number sign (#) followed by a
numeric expression. When the computer evaluates this
expression and rounds the answer to the nearest integer. the
number must be 1 to 255 inclusive and cannot be the same file-
number as any other file you are using concurrently in the

program.

@ file-name — A file-name refers to a device or to a file located on a
device, depending on the capability of the accessory. Each
accessory has a predefined name which the computer recognizes.
For example, the valid file-names for the two audio cassette
recorders are "CS1” and "CS2.” By including this file-name in the
OPEN statement, you are telling the computer to access a
particular file or device whenever the program references the
associated file-number. The file-name can be any string
expression which evaluates to a valid file-name. If you use a
string constant, you must enclose it in quotes.

Examples:

>100 OPEN #2:"CS1",SEQUENTIAL
,INTERNAL ,INPUT,FIXED 128,PE
RMANENT

>100 OPEN #25:"CS1",SEQUENTIA
L,INTERNAL,INPUT,FIXED,PERMA
NENT

>110 X=100

>120 OPEN #X+5:"CS2",SEQUENTI
AL,INTERNAL,OUTPUT,FIXED,PER
MANENT

>130 N=2

>140 OPEN #122:"CS"&STRS(N),S
EQUENTIAL , INTERNAL,OUTPUT,FI
XED,PERMANENT

User's Reference Guide

145

OPEN

Cassette Recorder Information

W file-number* — any number between 1 and 255 inclusive
W file-name* — “CS1" or "CS2"

W file-organization - SEQUENTIAL

B file-type — INTERNAL (preferred) or DISPLAY

B open-mode* — INPUT or OUTPUT

B record-type* — FIXED

*This specification is required.

For cassette tape records, you may specify any length up to 192
positions. However, the cassette tape device uses records with 64,
128, or 192 positions and will pad the record you specify to the
appropriate length. Thus, if you specify an 83-position cassette
record, the computer will actually write a 128-position record. If the
record length is not specified, a 64-position record length is
assumed.

For cassette devices, the computer does not compare the file
specifications in the OPEN statement to the characteristics of an
existing file.

Whenever the computer performs the OPEN statement for a
cassette tape device, you will receive instructions on your screen for
activating the recorder, as shown on the right.

Note: Only “CS1” can be specified for an INPUT file. Both "CS1”
and "CS2" can be used for OUTPUT files.

Examples:

>NEW

>100 OPEN #2:"CS1",INTERNAL,I
NPUT,FIXED

. program lines

>290 CLOSE #2
>300 END
>RUN

* REWIND CASSETTE TAPE csi
THEN PRESS ENTER

* PRESS CASSETTE PLAY cs1
THEN PRESS ENTER
. rest of programs run

* PRESS CASSETTE STOP s
THEN PRESS ENTER
*% DONE ==
148 User’s Reference Guide

OPEN

@ open-mode — This entry instructs the computer to process the file
in the INPUT, OUTPUT, UPDATE or APPEND mode. If you
omit this clause, the computer will assume the UPDATE mode.

— INPUT files may be read only.

— OUTPUT files may be written only. The new file created
will have all the characteristics given by the OPEN
statement specifications and any standard defaults.

— UPDATE files may be both read and written. The usual
processing is to read a record, change it in some way,
then write the altered record back out on the file.

— APPEND mode allows data to be added at the end of the
existing file. The records already on the file cannot be
accessed in this mode.

8 record-type — This entry specifies whether the records on the file
are all the same length (FIXED) or vary in length (VARIABLE).

The keyword FIXED or VARIABLE may be followed by a
numeric expression specifying the maximum length of a record.

Each accessory device has its own maximum record length, so be

sure to check the manuals which accompany them. If you omit
the record-length specification, the computer will assume a
record length depending upon the device used.

If you define a file as RELATIVE, you must use FIXED-length
records. If this entry is omitted for RELATIVE files, FIXED-
length records are assumed, with the length dependent on the
device.

SEQUENTIAL files may have FIXED or VARIABLE length
records. If this entry is omitted for SEQUENTIAL files,
VARIABLE:-length records are assumed.

If records are FIXED, the computer will pad each record on the
right to ensure that it is the specified length. If the data is
recorded in DISPLAY format, the computer will pad the record
with spaces. If the INTERNAL format is used, the FIXED-
length record will be padded with binary zeroes.

B file-life — Files you create with your TI Home Computer are
considered PERMANENT, not temporary. You may omit this
entry entirely, since the computer will assume a PERMANENT
file-life.

Examples:

>100 OPEN H53:NAMES,FIXED,INT
ERNAL ,RELATIVE

(computer assumes UPDATE)

>100 OPEN #11:NAMES,INPUT,INT
ERNAL,SEQUENTIAL,VARIABLE 10
0

>100 OPEN #75:"cs1",0UTPUT,FI
XED

(computer assumes SEQUENTIAL,
DISPLAY,FIXED length of 64
positions)

User’s Reference Guide

147

CLOSE

Cassette Recorder Information

Whenever the computer performs the CLOSE statement for a
cassett'e tape device, you will receive instructions on your screen for
operating the recorder, as shown on the right.

Examples:

>NEW

>100 OPEN #24:"CS1",INTERNAL,
INPUT, FIXED

>110 OPEN #19:"CS2",INTERNAL,
OUTPUT,FIXED

. program lLines

>200 CLOSE #24
>210 CLOSE #19
>220 END

>RUN

* REWIND CASSETTE TAPE €s1
THEN PRESS ENTER

* PRESS CASSETTE PLAY cs1
THEN PRESS ENTER

* REWIND CASSETTE TAPE €se
THEN PRESS ENTER

* PRESS CASSETTE RECORD (S2
THEN PRESS ENTER
« program runs

* PRESS CASSETTE STOP (]
THEN PRESS ENTER

* PRESS CASSETTE STOP cs?
THEN PRESS ENTER
% DONE #»
If you use the DELETE option with cassette recorders, no action
beyond the closing of the file takes place.
User's Referencs Guide

150

CLOSE

CLOSE #fife-numberd:DELETEI

The CLOSE statement “closes” or discontinues the association
between a file and a program. After the CLOSE statement is
performed. the “closed” file is not available to your program unless
you OPEN it again. Also, the computer will no longer associate the
closed file with the file-number you specified in the program. You
can then assign that particular file-number to any file you wish.

If you use the DELETE option in the CLOSE statement, the
action performed depends on the device used. As additional

accessory devices become available, their accompanying manuals
will describe the DELETE option.

If you attempt to CLOSE a file that you have not opened previously

in your program, the computer will terminate your program with
the "FILE ERROR" message.

In order to safeguard your files, the computer will automatically
close any open files should an error occur which terminates your
program. If a break occurs in your program, either by a BREAK
command or your pressing the BREAK key (8HIFT C), open files are
automatically closed only if one of the following occurs:

B you edit the program

8 you terminate BASIC with the BYE command
@ you RUN the program again

B you enter a NEW command

If you use the SHIFT Q@ key to leave your program, the computer will
NOT close any open files and you could lose the data on these files.
If you need to exit from your file-processing program before its

normal end, follow these directions so that you won't lose any data:

B8 Press the 'BREAK" key (SHIFT C) until the computer
reacts with "BREAKPOINT AT xx.” This may take
several seconds.

B Enter BYE when the cursor reappears on the screen.

Examples:

>NEW

>100 OPEN #6:"CS1",SEQUENTIAL
LINTERNAL,INPUT,FIXED

>110 OPEN #25:"CS2",SEQUENTIA
L,INTERNAL,OUTPUT,FIXED

: program Llines
>éOO CLOSE #6:DELETE

>210 CLOSE #25
>220 END

User's Reference Guide

149

INPUT

DISPLAY type Data

DISPLAY type data has the same form as data entered from the
keyboard. The computer knows the length of each data item in a

DlSPLAY-typc record by the comma separators placed between
items.

Each item in a DISPLAY -type record is checked to ensure that
numeric values are placed in numeric variables as shown on the
right in record 1. If the data-type doesn't match the variable-type. as
in Record 2 on the right (JG is not a numeric value). an INPUT
ERROR will occur and the program will terminate.

INTERNAL-type Data
INTERNAL-type data has the following form:

Numeric
items:

1 J
I L

designates length value of item

of item
(always 8)
String 2 2
items: Ll |
I]
designates length value of item
of item

The computer knows the length of each INTERNAL-type item by
interpreting the one-position length indicator at the beginning of
each item.

Limited validation of INTERNAL-type data-items is performed. All
numeric items must be 9 positions long (8 digits plus one position
which specifies the length) and must be valid representations of
floating-point numbers. Otherwise, an INPUT ERROR will occur,
and the program will terminate.

For FIXED-length INTERNAL records, reading beyond the actual
data recorded in each record will cause padding characters (binary
zeros) to be read. If you attempt to assign these characters to a
numeric variable, an INPUT ERROR occurs. If strings are being
read, a null string is assigned to the string variable.

Exsmplex:

>REN

>100 OPER #13:7CS1™,SEQUERTIA
L,DISPLAY, INPUT, FI11ED 64
>110 INPUT #13:4,8,STATES,0S,
x,v

--INPUT RECORD 1=22,97.6,
TEXAS,“AUTO LICEMSE *,
22000,-.07

-—INPUT RECORD 2=J6,22,TEXAS,
PROPERTY TAX, 42,15

182

INPUT

INPUT #fle-nomberi REC numeric-expressionl:variable-listl

{See page 86 for a description of the INPUT form for use with the
T1 Home Computer keyboard.)

This form of the INPUT statement allows you to read data from an
accessory device. The INPUT statement can be used only with files
opened m INPUT or UPDATE mode. The file-number in the
INPUT statement must be the file-number of a currently open file.
Fie-number 0. the keyboard. may always be used. If you choose to
use file-number 0. the INPUT statement is performed as described
on page 86, except that you cannot specify an input-prompt.

The variable-list contains those variables which are assigned values
when the INPUT statement is performed. Variable names in the
variable-list are separated by commas and may be numeric and/or

Filling the variable-list

When the computer reads records from a file. it stores each
complete record internally in a temporary storage area called an
input/output (1/0) buffer. A separate buffer is provided for each
open file-number. Values are assigned to variables in the variable-
Iist from left to right, using the data in this buffer. Whenever a
variable-list has been filled with corresponding values, any data
items left in the buffer are discarded unless the INPUT statement
ends with a trailing comma. Using a trailing comma creates a
“pending” input condition (see "Using Pending Inputs” on page 154).

If the variable-list in the INPUT statement is longer than the
number of data items in the current record being processed, the
computer will get the next record from the file and use its data
items to complete the variable-list, as shown on the right.

When performing the INPUT statement, the computer will take
different actions depending on whether the data stored is in
DISPLAY or INTERNAL format.

Examples:

>NEW

>100 OPEN #13:"CS1",SEQUENTIA
L,DISPLAY,INPUT,FIXED

>110 INPUT #13:A,8,CS$,D$,X,Y,
s

>120 IF A=99 THEN 150

>130 PRINT A;B:C$:D$:X;Y:Z$

>140 60T0 110

>150 CLOSE #13

>160 END

>RUN

--data stored on tape will be
printed on the screen

#% DONE **

>NEW
>100 OPEN #13:"CS1"_,SEQUENTIA
L,DISPLAY, INPUT, FIXED 64
>110 INPUT #13:A,B,C,D
. programa Lines
>290 CLOSE #13
>300 END
>RUN
--1st INPUT RECORD=22,77,56,
92

--Results:
A=22 B=77 (=56 =92

>NEW

>100 OPEN #13:"CS1",SEQUENTIA
L,DISPLAY,INPUT,FIXED 64
>110 INPUT #13:A,B,C,D,E,F,6

. program Llines
>400 END

==1ST INPUT RECORD=22,33.5
==2ND INPUT RECORD=405,92
==3RD INPUT RECORD=22,11023
~=4TH INPUT RECORD=99,100

-=Results:
A=22 B=33.5 (=405 Dp=92

E=-22 F=11023 6=99

User's Refarcace Guide

151

INPUT

Using Pending Inputs

A-pending. i_nput condition is established when an INPUT statement
with a trailing comma is performed. When the next INPUT

st_atement using that file is encountered, one of the following actions
will occur:

B If the next INPUT statement has no REC clause — the

computer uses the data in the I/0 buffer beginning where
the previous INPUT statement stopped.

W If the next INPUT statement includes a REC clause —
the computer terminates the pending input condition and
reads the specified record into the file's I/0 buffer.

Ifa pendipg input condition exists and a PRINT statement for the
same file is performed, the pending input condition is terminated
and the PRINT statement is performed as usual.

If you use a pending input with file-number 0, the error message
“"INCORRECT STATEMENT" is printed and the program stops
running.

End-of-flle

In sequential processing, to prevent an error when the computer
has no more data to read, you will need to notify the computer that
the end of the file has been reached. To make this easier for you, TI
BASIC includes an End-of-File function called EOF (see page 156).
Be sure to include the EOF statement immediately before the
INPUT statement which reads a sequential file. In this way you can
easily cause the computer to stop reading the input file when no
more data is available. The usual procedure is to skip to a closing
routine when EOF is reached.

Examples:

>NEW

>100 INPUT #O0:A,B,
>110 PRINT A;B
>120 60TO0 100
>RUN
?
* INCORRECT STATEMENT
IN 100

>NEW

>100 OPEN #S:NAMES,SEQUENTIAL
,INTERNAL,INPUT, FIXED

>110 IF EOF(5) THEN 150

>120 INPUT #5:A,B

>130 PRINT A;B

>140 60TO0 110

>150 CLOSE #5

>160 END

154

Uner’s Refavence Guide

L

T
Using INPUT with RELATIVE Flies Examples:
(See page 146 for a description of RELATIVE file-organization.) SNEW

You may read RELATIVE files either sequentially or randomly.
The computer sets up an internal counter to point to which record
should be processed next. The first record in a file is record 0.
Thus, the counter begins at zero and is incremented by +1 after
each access to the file, either to read or to write a record. In the
example on the right, the statements direct the computer to read
the file sequentially.

The internal counter can be changed by using the REC clause. The
numeric-expression following the keyword REC will be evaluated
to designate a specific record number on the file. When the
computer performs an INPUT statement with a REC clause, it
reads the specified record from the designated file and places it in
the 170 buffer. The REC clause can appear only in statements
referencing RELATIVE files. The example on the right illustrates
accessing a RELATIVE file randomly, using the REC clause.

Be sure to use the REC clause if you read and write records on the
same file within a program. Since the same internal counter is
incremented when records are either read or written for the same
file, you may skip some records and write over others if REC is not
used, as shown in the example on the right.

If the internal counter points to a record beyond the limits of the file

when the computer tries to access the file, the program will
terminate with an INPUT ERROR.

>100 OPEN #4:NAMES,RELATIVE,I
NTERNAL,INPUT,FIXED 64
>110 INPUT #4:A,B,CS,DS,X

. program lines

>200 CLOSE #4
>210 END

>NEW

>100 OPEN #6:NANES,RELATIVE,I
NTERNAL ,UPDATE,FIXED 72

>110 INPUT K

>120 INPUT #6,REC K:A,B,CS,DS$

. program lines

>170 PRINT #6,REC K:A,B,CS,DS$

. program lLines

>300 CLOSE #6
>310 END

>NEW

>100 OPEN #3:NAMES,RELATIVE,I
NTERNAL ,UPDATE,FIXED

>110 FOR I=1 TO 10

>120 INPUT #3:AS,B$,CS,X,Y

. program Llines

>230 PRINT #3:AS$,BS,CS,X,Y
>240 NEXT I

>250 CLOSE #3

>260 END

>RUN

==LINE 120-Reads records
0,2,4,6,8,..

==LINE 130-¥rites records
1,3,5,7,9...

153

EOF—End-of-File Function

EOF (numeric-expression) Examples:

The end-of-file function determines if an end-of-file has been >SNEW

reached on a file stored on an accessory device. The argument

specifies an open file-number (see page 145). The argument is the >1 ‘I’STg:ﬂL”f;:G:E:;i::”"”“
value obtained when the numeric-expression is evaluated. The >710 1F EOF(2) THEN 160
normal rules for the evaluation of numeric expressions (page 40) >120 REM IF EOF GIVES ZERO
are used here. >130 INPUT #2:A,8,C

>140 PRINT A;B;C

. . .. >150 60T0 110
The value the function provides depends on the position of the file. >160 CLOSE #2
The values supplied are: >170 END

Value Position

0 Not end-of-file
+1 Logical end-of-file
-1 Physical end-of-file

A file is positioned at a logical end-of-file when all records on the
file have been processed. A file is positioned at a physical end-of-file
when no more space is available for the file.

This function and the example on the right cannot be used with
cassette tape recorders. Its use with any other accessory devices
will be more fully explained in their accompanying manuals.

156 User’s Refarence Guide

o

The EOF function cannot be used with RELATIVE files or with
some accessory devices. In these cases, you will need to create your
own method for determining that the end-of-file has been reached.

One common end-of-file technique is to create a last record on the
file that serves as an end-of-file indicator. It is called a "dummy”
record because the data it contains is used only to mark the end of
the file. For example, it could be filled with "9's.” Whenever the
computer inputs a record, you can check the data. If it is equal to
"9's,” then the computer has reached end-of-file and can skip to the
closing routine.

The first example on the right creates a dummy record. In the next
example, the computer checks for the dummy record as its end-of-
file technique.

Casseeite Recorder Information

@ RELATIVE file-organization cannot be used with
cassette devices.

8 The EOF (End-of-File) function cannot be used with files
on cassette recorders.

® You may specify a record length up to 192 positions (see

Examples:

>NEW

>100 OPEN #2:"CS1",SEQUENTIAL
,FIXED,OUTPUT, INTERNAL

>110 READ A,B,C

>120 IF A=99 THEN 180

>130 E=A+B+C

>140 PRINT A;B;C;E

>150 PRINT #2:A,B,C,E

>160 GOTO 110

>170 DATA 5,10,15,10,20,30,10
0,200,300,99,99,99

>180 PRINT #2:99,99,99,99

>190 CLOSE #2

>200 END

>RUN

* REWIND CASSETTE TAPE cs1
THEN PRESS ENTER

* PRESS CASSETTE RECORD (CS1
THEN PRESS ENTER
5 10 15 30
10 20 30 60
100 200 300 600

* PRESS CASSETTE STOP cs1
THEN PRESS ENTER

*+ DONE **

>NEW

>100 OPEN #1:"CS1",INTERNAL,I
NPUT,FIXED

>110 INPUT #1:A,B,C,E

>120 IF A=99 THEN 160

>130 F=AxE

>140 PRINT A;B;C;E;F

>150 G6OTO 110

>160 CLOSE #1

>170 END

>RUN

* REWIND CASSETTE TAPE cs1
THEN PRESS ENTER

* PRESS CASSETTE PLAY cs1
THEN PRESS ENTER
5 10 15 30 150
10 20 30 60 600
100 200 300 600 6000

page 148). * PRESS CASSETTE STOP cs1
_ _ _ THEN PRESS ENTER
@ Only cassette unit 1 (CS1) can be used for inputting
data. +% DONE ##
Tisers Reference Guide

155

PRINT

Whe-:n iFems in the print-list are written on the accessory storage
device in INTERNAL format, they have the following
characteristics:

Numeric
i tems: l Il
—

designates length value of item

of item
(always 8)
String
itemS.' | I g i |
T |
designates length value of item
of item

In the example on the right. the total length of the data recorded in
INTERNAL format is 71 positions. Each numeric variable uses 9
positions. A$ is 18 characters long (line 110) plus 1 position to
record the length of the string. B$ is 15 characters (line 120) plus 1.
If the values of A$ and B$ change during the program, their lengths
will vary according to whatever value is present when the record is
written onto the files. In designing your record. therefore, become
familiar with the data each variable might contain and plan your
record to allow for the largest length possible.

Whenever you specify FIXED-length records. the computer will
pad each INTERNAL-type record with binary zeros, if necessary,
to bring each record to the specified length.

The computer will not allow a record to be longer than the specified
or default length for the device you are using. If including all data in
a print-list would cause this condition to occur for an INTERNAL-
type record. the program will terminate with the message "FILE
ERROR IN xx.”

Examples:

>NEW

>100

OPEN #5:"CS1",SEQUENTIAL

,INTERNAL ,OUTPUT,FIXED 128

>110
>120
>130
>140
>150
>160
>170
>180

AS="TEXAS INSTRUMENTS "
B$S="HOME COMPUTER "

READ X,Y,Z

IF X=99 THEN 190

A=X*Y*Z

PRINT #5:A$,X,Y,2,BS,A
60TO 130

DATA 5,6,7,1,2,3,10,20,3

0,20,40,60,1.5,2.3,7.6,99,99

,99
>190
>200
>RUN

CLOSE #5
END

* REWIND CASSETTE TAPE cs1
THEN PRESS ENTER

* PRESS CASSETTE PLAY cs1
THEN PRESS ENTER

--data written on tape

* PRESS CASSETTE STOP cs1
THEN PRESS ENTER

*%x DONE *#

158

Usors Reference Gaade

PRINT

PRINT #file-numberl, REC numeric-expressionll:print-list

(See page 93 for a description of the PRINT format for printing on
the computer screen.)

This form of the PRINT statement allows you to write data onto an
accessory device. The PRINT statement can be used to write only
on files opened in OUTPUT, UPDATE, or APPEND mode (see
page 147). The file-number must be the file-number of a currently

open file.

When the computer performs a PRINT statement, it stores the data
in a temporary storage area called an input/output (I/0) buffer. A
separate buffer is provided for each open file-number. If the PRINT
statement does not end with a print-separator (comma, semicolon,
or colon), the record is immediately written onto the file from the
170 buffer. If the PRINT statement ends with a print-separator, the
data is held in the buffer and a “pending” print condition occurs (see
"Using Pending Prints” on page 161).

The information you need for creating a print-list to record data on
accessory file storage devices is discussed here. The print-list
needed to display print lines (on a printer, etc.) is the same as the
print-list described on page 93. You may use either DISPLAY or
INTERNAL format for data stored on accessory devices. However,
since these files are read only by the computer, by far the easiest-to-
use and most efficient data-type is INTERNAL.

Using PRINT with INTERNAL-type Data

The print-list consists of numeric and string expressions separated
by commas, colons, or semicolons. All print-separators in a print-
list have the same effect for INTERNAL-type data — they only
separate the items from each other and do not indicate spacing
character positions in a record.

Examples:

>NEW

>100 OPEN #5:"CS1",SEQUENTIAL
,INTERNAL,OUTPUT, FIXED

. program Llines
>170 PRINT #5:A,B,CS,DS
. program lines

>200 CLOSE #5
>210 END

>NEW

>100 OPEN #6:"CS2",SEQUENTIAL
,DISPLAY ,OUTPUT, FIXED

. program lines

>170 PRINT #6:A;",";B;",";CS;
ll'll;Ds

. program lines

>200 CLOSE #6
>210 END

User's Refereace Guide

157

PRINT

Using PRINT with RELATIVE Flles
(See page 146 for a description of RELATIVE file-organization.)

RELATIVE file records can be processed randomly or in sequence.
The computer sets up an internal counter to point to which record
should be processed next. The first record in a file is record 0.
Thus, the counter begins at zero and is incremented by +1 after
each file access, either to read or to write a record. In the example
on the right, the PRINT statement directs the computer to write

the file sequentially. It can later be processed either randomly or in
sequence.

The internal counter can be changed by using the REC clause. The
keyword REC must be followed by a numeric-expression whose
value specifies in which position the record in the file is to be
written. When the computer performs a PRINT statement with a
REC clause, it begins building an output record in the 1/0 buffer.
When this record is written onto the file, it will be placed at the
location specified by the REC clause. You may use the REC clause
only with RELATIVE files. The example on the right illustrates
writing records randomly, using the REC clause.

Be sure to use the REC clause if you read and write records on the
same file within a program. Since the same internal counter is
incremented when records are either read or written for the same
file, you could skip some records and write over others if REC is
not used, as shown in the example on the right.

Examples:

>NEW

>100 OPEN #3:NAMES,RELATIVE,1
NTERNAL ,OUTPUT,FIXED 128

. program lines

>150 PRINT #3:AS$,BS,C$,X,Y,2

. program lines

>200 CLOSE #3

>210

>NEW

END

>100 OPEN #3:NAMES, RELATIVE,I
NTERNAL ,UPDATE, FIXED 128

>110 INPUT K

>120 INPUT #3,REC K:AS,BS,CS,

X,v,

z

. program lines

>300 CLOSE #3

>310

>NEW

END

>100 OPEN #3:NAMES,RELATIVE,1
NTERNAL ,UPDATE, FIXED

FOR I=1 TO 10

INPUT #3:AS,8%,CS,X,Y
PRINT #3:AS,BS,CS$,X,Y

>110
>120
>130
>140
>150
>160

NEXT I

CLOSE #3

END

LINE 120-reads records 0,2,4,

2P wes

LINE 130-writes records 1,3,

eTs

160

PRINT

Using PRINT with DISPLAY-type Data on Flle Storage Devices

Although it is best to use INTERNAL format for data recorded on
file storage devices which will be read by the computer, you may
occastionally need to use DISPLAY -type records. Included here are

several important considerations you must observe when using
DISPLAY format.

B Records are created according to the specifications found
in the PRINT statement of the INPUT-OUTPUT section
(page 93).

@ If including a data-item from the print-list would cause
the record to be longer than the specified or default length
for the device you are using, the item is not split but
becomes the first item in the next record. If any single
item is longer than the record length, the item will be split
into as many records as required to store it. The program
continues running normally and no warning is given.

B In order to later read DISPLAY-type files created with the >NEW

Examples:

PRINT statement, the data must look like it does when
you enter it from the keyboard. Therefore, you must
explicitly include the comma separators and quote marks
needed by the INPUT statement when you write the
record on the file. These punctuation marks are not
automatically inserted when the PRINT statement is
performed. They must be included as items in the print-
Iist, as shown in line 170 on the right.

B Numeric items do not have a fixed length as they do in
INTERNAL format. In DISPLAY-type files, the length of
a numeric item is the same as it would be if it were
displayed on the screen using the PRINT (see page 93)
or DISPLAY (see page 98) statement (i.e., includes sign,
decimal point, exponent, trailing space, etc.). For
example, the number of positions required to print
1.35E—-10is ten.

>100 OPEN #10:"CS1",SEQUENTIA
L,DISPLAY,OUTPUT,FIXED 128

. program Llines

>17° PRINT #10:llll"ll;As;"llll'll;
x;"’";Y;"’”;Z;",""";Bs;""","
s A
. program Lines

>300 CLOSE #10
>310 END

RESTORE

RESTORE #file-numben . REC numeric-expressionl

(See page 92 for a description of the RESTORE statement used
with the READ and DATA statements.)

The RESTORE statement repositions an open file at its beginning
record (see the first example on the right), or at a specific record if
the file is RELATIVE (see the second example on the right).

If the file-number specified in a RESTORE statement is not

already open. the program will terminate with the message "FILE
ERROR IN xx.”

You may use the REC clause only with a RELATIVE file. The
computer evaluates the numeric-expression following REC and

uses the value as a pointer to a specific record on the file. If you
RESTORE a RELATIVE file and do not use the REC clause. the
file will be set to record O.

If there is a pending PRINT record, the record will be written on
the file before the RESTORE is performed. If there is a pending
INPUT. the data in the 170 buffer is discarded.

RELATIVE files are not supported by cassette recorders.

Exampies:

>NEW

>100 OPEN #2:"CS1%, SEQUENTIAL
,INTERNAL ,INPUT, FIXED 64

>110 INPUT #2:A,8,CS,DPS,X

. program lines

>400 RESTORE #2
>410 INPUT #2:A,B,CS$,08,X

. program lines
>500 CLOSE #2
>510 END
>NEW
>100 OPEN #4:NAMES_ RELATIVE,1
NTERNAL ,UPDATE,FIXED 128
>110 INPUT #4:A,8,C
- program lines
>200 PRINT #4:A,B,C
. program lines

>300 RESTORE #4,REC 10
>310 INPUT #4:A,8,C

. program lines

>400 CLOSE #4
>410 END

Femme———

Using Pending Prints

A record ts always written onto a file whenever the computer
performs a PRINT statement which has no trailing separator. A
pending print condition is established when a PRINT statement
with a trailing printseparator is performed. When the next PRINT

statement using the file is encountered, one of the following actions
OCCUrs:

@ If the next PRINT statement has no REC clause — the
computer places the data in the 1/0 buffer immediately
following the data already there.

B If the next PRINT statement has a REC clause — the
computer writes the pending print record onto the file at
the position indicated by the internal counter and
performs the new PRINT-REC statement as usual.

If a pending print condition exists and an INPUT statement for the
same file is encountered, the pending print record will be written
onto the file at the position indicated by the internal counter, and
the internal counter is incremented. Then the INPUT statement is
performed as usual. If a pending print condition exists and the file is
closed (see page 149) or restored (see page 162), the pending print
record is written before the file is closed or restored.

Cassetie Recorder Information

B You may specify any record length up to 192 positions
(see page 148).

B You may process SEQUENTIAL files only (you cannot
use RELATIVE file-organization with cassette tapes).

Appendix

TABLE 2. CHARACTER SETS

SET ASCII CODES SET ASCII CODES

1 32-39 9 96-103

2 40-47 10 104-111
3 48-55 11 112-119
4 56-63 12 120-127
5 64-71 13 128-135
6 72-79 14 136-143
7 80-87 15 144-151
8 88-95 16 152-159

TABLE 3. PATTERN-IDENTIFIER CONVERSION TABLE

BINARY CODE HEXADECIMAL
Blocks (0 =off;1 =on) CODE

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

TTHODOWPOXIONEWN=O

o4 Uner's Referencs Gurde

Appendix

TABLE 1. CHARACTER CODES

ASCII ASCII

CODE CHARACTER CODE CHARACTER
32 (Space) 64 @ (at sign)
33 ! (exclamation point) 65 A
34 * (quote) 66 B
35 # (number or pound sign) 67 C
36 $ (dollar) 68 D
37 % (percent) 69 E
38 & (ampersand) 70 F
39 > (apostrophe) 71 G
40 ((open parenthesis) 72 H
41) (close parenthesis) 73 I
42 * (asterisk) 74 J
43 + (plus) 75 K
44 , (comma) 76 L
45 - (minus) 77 M
46 . (period) 78 N
47 / (slant) 79 o
48 0 80 P
49 1 81 Q
50 2 82 R
51 3 83 S
52 4 84 T
53 5 85 U
54 6 86 Vv
55 7 87 W
56 8 88 X
57 9 89 Y
58 : (colon) 90 Z
59 ; (semicolon) 01 [(open bracket)
60 < (less than) 92 . (reverse slant)
61 = (equals) 93] (close bracket)
62 > (greater than) 04 " (exponentiation)
63 ? (question mark) Q5 — (hine)

User's Reference Guide

163

TABLE S. COLOR CODES

COLOR

Transparent
Black

Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan

CODE #

o~NONWN s W -

COLOR CODE #
Medium Red 9
Light Red 10
Dark Yellow 11
Light Yellow 12
Dark Green 13
Magenta 14
Gray 15
White 16

TABLE 6. HIGH-RESOLUTION COLOR COMBINATIONS

The following color combinations produce the sharpest, clearest character resolution on the TI-99/4
color monitor screen. Color codes are included in parentheses.

Black on Medium Green (2, 3)
Black on Light Green (2, 4)
Black on Light Blue (2, 6)

Black on Dark Red (2. 7)

Black on Cyan (2, 8)

Black on Medium Red (2, 9)
Black on Light Red (2, 10)

Black on Dark Yellow (2, 11)
Black on Light Yellow (2, 12)
Black on Dark Green (2, 13)
Black on Magenta (2, 14)

Black on Gray (2, 15)

Black on White (2, 16)

Medium Green on White (3, 16)
Light Green on Black (4, 2)
Light Green on White (4, 16)
Dark Blue on Light Blue (5, 6)
Dark Blue on Gray (5, 15)

Dark Blue on White (5, 16)

Light Blue on Gray (6, 15)

Light Blue on White (6, 16)

Dark Red on Light Yellow (7, 12)
Dark Red on White (7, 16)
Medium Red on Light Red (9, 10)
Medium Red on Light Yellow (9, 12)
Medium Red on White (9, 16)

Light Red on Black (10, 2)

Light Red on Dark Red (10, 7)
Dark Yellow on Black (11, 2)
Light Yellow on Black (12, 2)
Light Yellow on Dark Red (12, 7)
Dark Green on Light Green (13, 4)
Dark Green on Light Yellow (13, 12)
Dark Green on Gray (13, 15)
Dark Green on White (13, 16)
Magenta on Gray (14, 15)
Magenta on White (14, 16)

Gray on Black (15, 2)

Gray on Dark Blue (15, 5)

Gray on Dark Red (15, 7)

Gray on Dark Green (15, 13)
Gray on White (15, 16)

White on Black (16, 2)

White on Medium Green (16, 3)
White on Light Green (16, 4)
White on Dark Blue (16, 5)
White on Light Blue (16, 6)
White on Dark Red (16, 7)

White on Medium Red (16, 9)
White on Light Red (16, 10)
White on Dark Green (16, 13)
White on Magenta (16, 14)
White on Gray (16, 15)

166

Uaer's Reference Guide

SPLIT CONSOLE KEYBOARD

Key-unit 1 : Key-unit 2
|
19 7 B g 10 | 19 7 B g 10
! @ # $ % (1] & * []
1 2 3 4 5 || © 7 8 9 0
L -
18 4 5 6 11118 4 5 6 11
1 : > — + (X
Q W E R T[] v U | 0 P
l
17 1 2 3 12 1 17 1 2 3 12
SPACE A S D F (1| G H J K L
!
L__ﬂ
16 15 0 14 13 1 _16 15 0 14 13
) ' - : ; '
I H
SHIFT 7 X C Vv : B N M ENTER
!
SPACE BAR

TABLE 4: CHARACTER CODES FOR SPLIT KEYBOARD

CODES KEYS* CODES KEYS*
0 XM 10 5,0
1 AH 11 TP
2 SJ 12 FL
3 DK 13 VENTER
4 WU 14 C.
5 E.l 15 ZN
6 R.0 16 SHIFTB
7 2,7 17 SPACE.G
8 3.8 18 QY
9 4.9 19 1.6

*Note that the first key listed is on the left side of the keyboard,
and the second key listed is on the right side of the keyboard.

Error Messages

l. Errors Found When Entering a Line

* BAD LINE NUMBER
1. Line number or line number referenced
equals O or is greater than 32767
2. RESEQUENCE specifications generate
a line number greater than 32767

* BAD NAME

1. The variable name has more than 15
characters

* CAN’T CONTINUE
1. CONTINUE was entered with no
previous breakpoint or program was
edited since a breakpoint was taken.

* CAN’T DO THAT

1. Attempting to use the following program
statements as commands: DATA, DEF,
FOR, GOTO, GOSUB, IF, INPUT,
NEXT, ON, OPTION, RETURN

2. Attempting to use the following
commands as program statements
(entered with a line number): BYE,
CONTINUE, EDIT, LIST, NEW,
NUMBER, OLD, RUN, SAVE

3. Entering LIST, RUN, or SAVE with no
program

* INCORRECT STATEMENT

1. Two variable names in a row with no
valid separator between them (ABC A or
ASA)

2. A numeric constant immediately follows
a variable with no valid separator
between them (N 257)

3. A quoted string has no closing quote
mark

4. Invalid print separator between numbers
in the LIST, NUMBER, or
RESEQUENCE commands

5. Invalid characters following
CONTINUE, LIST, NUMBER,
RESEQUENCE, or RUN commands

6. Command keyword is not the first word
in a line

7. Colon does not follow the device name in
a LIST command

» LINE TOO LONG |
1. The input line is too long for the input

buffer

* MEMORY FULL
1. Entering an edit line which exceeds
available memory
2. Adding a line to a program causes the
program to exceed available memory

Il. Errors Found When Symbol Table Is
Generated

When RUN is entered but before any program
lines are performed, the computer scans the
program in order to establish a symbol table. A
symbol table is an area of memory where the
variables, arrays, functions, etc., for a program
are stored. During this scanning process, the
computer recognizes certain errors in the
program, as listed below. The number of the
line containing the error is printed as part of the
message (for example: * BAD VALUE IN 100).
Errors in this section are distinguished from
those in section 111, in that the screen color
remains cyan until the symbol table is
generated. Since no program lines have been
performed at this point, all the values in the
symbol table will be zero (for numbers) and null
(for strings).

* BAD VALUE
1. A dimension for an array is greater than
32767

2. A dimension for an array is zero when
OPTION BASE =1

* CAN’T DO THAT
1. More than one OPTION BASE
statement in your program
2. The OPTION BASE statement has a
higher line number than an array
definition

* FOR-NEXT ERROR
1. Mismatched number of FOR and
NEXT statements

* INCORRECT STATEMENT
DEF

1. No closing)" after a parameter in a
DEF statement

2. Equals sign (=) missing in DEF
statement

3. Parameter in DEF statement is not a
valid variable name

168

User's Rafarence Guide

TABLE 7. MUSICAL TONE FREQUENCIES

The following table gives frequencies (rounded to integers) of four octaves of the tempered scale (one
half step between notes). While this list does not represent the entire range of tones — or even of
musacal toaes — it can be helpful for musical programming.

Frequency Note Frequency Note
110 A 440 A (above middle C)
117 A# BV 466 A# BP
123 B 494 B
131 C (low C) 523 C (high C)
139 C* D} 554 Cc# D’
147 D 587 D
156 D* E? 622 D# EP
165 E 659 E
175 F 698 F
185 F#* G’ 740 F# G?
196 G 784 G
208 G*B 831 G* A
220 A (below middle C) 880 A (above high C)
220 A (below middle C) 880 A (above high C)
233 A* BY 932 A# B)
247 B 988 B
262 C (middle C) 1047 C
277 C*.D? 1109 c#.D
204 D 1175 D
311 D#.E’ 1245 D* E?
330 E 1319 E
349 F 1397 F
370 F* G’ 1480 F#*,G?
392 G 1568 G
415 G* A 1661 G* A
440 A (above middle C) 1760 A
oars Reterssre Gyide =

Error Messages

OPEN, CLOSE, INPUT, PRINT,
RESTORE

11. File-number negative or greater than
255

12. Number-of-records in the
SEQUENTIAL option of the OPEN

statement 1S non-numeric or greater
than 32767

13. Record-length in the FIXED option of
the OPEN statement is greater than
32767

POS

14. The numeric-expression in the POS

statement is negative, zero, or larger
than 32767

SCREEN
15. Screen color-code out of range

SEGS$

16. The value of numeric-expressionl
(character position) or numeric-
expression2 (length of substring) is
negative or larger than 32767

SOUND

17. Duration, frequency, volume or noise
specification out of range

TAB

18. The value of the character position is
greater than 32767 in the TAB function
specification

* CAN’'T DO THAT

1. RETURN with no previous GOSUB
statement

2. NEXT with no previous matching FOR
statement

3. The control-variable in the NEXT
statement does not match the control-
variable in the previous FOR statement

4. BREAK command with no line number

» DATA ERROR

1. No comma between items in DATA
statement

2. Variable-list in READ statement not
filled but no more DATA statements are
available

3. READ statement with no DATA
statement remaining

4. Assigning a string value to a numeric
variable in a READ statement

5. Line-number in RESTORE statement
is greater than the highest line number
in the program

* FILE ERROR

1. Attempting to CLOSE, INPUT,
PRINT, or RESTORE a file not
currently open

2. Attempting to INPUT records from a
file opened as OUTPUT or APPEND

3. Attempting to PRINT records on a file
opened as INPUT

4. Attempting to OPEN a file which is
already open

* INCORRECT STATEMENT
General
1. Opening "(", closing ")", or both missing
2. Comma missing
3. No line number where expected in a
BREAK, UNBREAK, or RESTORE
(BREAK 100,)
4."+" or "—" not followed by a numeric
expression
5. Expressions used with arithmetic
operators are not numeric
6. Expressions used with relational
operators are not the same type
7. Attempting to use a string expression as
a subscript
8. Attempting to assign a value to a
function
9. Reserved word out of order
10. Unexpected arithmetic or relational
operator is present
11. Expected arithmetic or relational
operator missing

Buiit-in Subprograms

12. In JOYST, the x-return and y-return are
not numeric variables

13. In KEY, the key status is not a numeric
variable

14. In GCHAR, the third specification must
be a numeric variable

15. More than three tone specifications or
more than one noise specification in
SOUND

16. CALL is not followed by a subprogram
name

170

User's Raference Guide

Error Messages

DIM

4. DIM statement has no dimensions or
more than three dimensions

5. A dimension in a DIM statement is not
a number

6. A dimension in a DIM statement is not
followed by a comma or a closing)"

7. The array-name in a DIM statement is
not a valid variable name

8. The closing ")” is missing for array
subscripts

OPTION BASE
9. OPTION not followed by BASE
10. OPTION BASE not followed by 0
orl

* MEMORY FULL
1. Array size too large
2. Not enough memory to allocate a
variable or function

* NAME CONFLICT

1. Assigning the same name to more than
one array (DIM A(5), A(2,7))

2. Assigning the same name to an array and
a simple variable

3. Assigning the same name to a variable
and a function

4. References to an array have a different
number of dimensions for the array
(B=A(2,7)+2,PRINT A(5))

lii. Errors Found When a Program Is Running

When a program is running, the computer may
encounter statements that it cannot perform. An
error message will be printed, and unless the
error is only a warning the program will end. At
that point, all variables in the program will have
the values assigned when the error occurred.
The number of the line containing the error will
be printed as part of the message (for example:
CAN-T DO THAT IN 210).

* BAD ARGUMENT

1. A built-in function has a bad argument

2. The string expression for the built-in
functions ASC or VAL has a zero length
(null string)

3. In the VAL function, the string
expression is not a valid representation
of a numeric constant

*

BAD LINE NUMBER
1. Specified line number does not exist in
ON, GOTO or GOSUB statement
2. Specified line number in BREAK or
UNBREAK does not exist (warning only)

BAD NAME
1. Subprogram name in a CALL statement

is invalid
BAD SUBSCRIPT
1. Subscript is not an integer
2. Subscript has a value greater than the
specified or allowed dimensions of an

array
3. Subscript 0 used when OPTION BASE

1 specified
BAD VALUE

CHAR

1. Character-code out of range in CHAR
statement

2. Invalid character in pattern-identifier in
CHAR statement

CHR$
3. Argument negative or larger than 32767
in CHR$

COLOR
4. Character-set-number out of range in
COLOR statement

S. Foreground or background color code out
of range in COLOR statement

EXPONENTIATION ()

6. Attempting to raise a negative number to
a fractional power

FOR

7. Step increment is zero in FOR-TO-
STEP statement

HCHAR, VCHAR, GCHAR
8. Row or column-number out of range in

HCHAR. VCHAR. or GCHAR
statement

JOYST KEY

9. Key-unit out of range in JOYST or KEY
statement

ON

10. Numeric-expression indexing line-
number is out of range

User's Reference Guide

169

Error Messages

The second digit (Y) indicates what kind of
error occurred.

Y Value Error Type

0 Device name not found
3 Illegal operation
6 Device error

1. Invalid device or file name in
DELETE, LIST, OLD, or SAVE
command

2. Not enough memory to allocate an
Input/Output buffer

3. This error can occur during file
processing if an accessory device is
accidentally disconnected while the
program is running

* MEMORY FULL

1. Not enough memory to allocate the
specified character in CHAR statement

2. GOSUB statement branches to its own
Iine-number

3. Program contains too many pending
subroutine branches with no RETURN
performed

4. Program contains too many user-defined
functions which refer to other user-
defined functions

5. Relational, string, or numeric
expression too long

6. User-defined function references itself

* NUMBER TOO BIG (warning given — value
replaced by computer limit as shown below)

1. A numeric operation produces an
overflow (value greater than
9.9999999999999E127 or less than
—9.9999999999999E 127

2. READing from DATA statement results
in an overflow assignment to a numeric
variable

3. INPUT results in an overflow
assignment to a numeric variable

* STRING-NUMBER MISMATCH

1. A non-numeric argument specified for a
built-in function, tab-function, or
exponentiation operation

2. A non-numeric value found 1n a
specification requiring a numeric value

3. A non-string value found in a
specification requiring a string value

4. Function argument and parameter
disagree in type, or function type and
expression type disagree for a user-
defined function

5. File-number not numeric in OPEN,
CLOSE, INPUT, PRINT, RESTORE

6. Attempting to assign a string to a
numeric variable

7. Attempting to assign a number to a
string variable

172

File Processing-Input/Output Statements

17. Number sign (#) or colon (:) in file-
number specification for OPEN,
CLOSE., INPUT, PRINT. or
RESTORE is missing

18. File-name in OPEN or DELETE must
be a string expression

19. A keyword in the OPEN statement is
invalid or appears more than once

20. The number of records in
SEQUENTIAL option is less than zero
in the OPEN statement

21. The record length in the FIXED option
in the OPEN statement is less than zero
or greater than 255

22. A colon () in the CLOSE statement is
not followed by the keyword DELETE

23. Print-separator (comma, colon,
semicolon) missing in the PRINT
statement where required

24. Input-prompt is not a string expression
in INPUT statement

25. File-name is not a valid string
expression in SAVE, LOAD, or OLD
command

General Program Statements

FOR

26. The keyword FOR is not followed by a
numeric variable

27. In the FOR statement, the control-
variable is not followed by an equals

NEXT
32. The keyword NEXT is not followed by
control-variable

ON-GOTO,ON-GOSUB
33. ON is not followed by a valid numeric
expression

RETURN
34. Unexpected word or character following
the word RETURN

User-Defined Functions

35. The number of function arguments does
not match the number of parameters for
a user-defined function

* INPUT ERROR

1. Input data is too long for Input/Output
buffer (if data entered from keyboard,
this is only a warning — data can be re-
entered)

2. Number of variables in the variable-list
does not match number of data items
input from keyboard or data file
(warning only if from keyboard)

3. Non-numeric data INPUT for a
numeric variable. This condition could
be caused by reading padding
characters on a file record. (Warning
only if tfrom keyboard)

4. Numeric INPUT data produces an
overflow (warning only if from
keyboard)

sign (=) S * I/0 ERROR - This condition generates an

28. The kBYWOfd TO is missing in the FOR accompanying error code as follows:
statement Wh /0O - -

29. In the FOR statement, the /imit is not Oden)%ny : dgrrc;r oc(ci:urg,ha two-digit error
followed by the end of line or the code (RY) is displayed with the message:
keyword STEP * 170 ERROR XY IN Jine-number

IF The first digit (X) indicates which 1/0

30. The keyword THEN is missing or not operation caused the error.
followed by a line number X Value Operation

LET 0 OPEN

31. Equals sign (=) missing in LET 1 CLOSE
statement 2 INPUT

3 PRINT

4 RESTORE
5 OLD

6 SAVE

7 DELETE

ﬁi&-mo&n

171

Applications Programs

Introduction

The programs in this section are designed to illustrate the use of
many of the statements in TI BASIC. If you've never had any
experience with programming, the best place to begin learning
about T1 BASIC is the Beginner's BASIC book included with your
computer. When you've finished reading and working through the
programs in that book. these programs will provide additional help
in more complex programming. If you've had some experience in

programming, these programs will provide a demonstration of many
of the TI BASIC features.

The programs included here begin at a simple level and
progressively become more complex. Thus, you can begin at
whatever level you want. Most of the programs employ the color
graphics and sound capabilities of the computer. These should

provide you with a good basis for designing your own graphics and
adding sound to your programs.

User's Relevencs Gurde
174

Accuracy Information

Displeyed Resuits Versus Accuracy

Computers, like all other devices, must operate
with a fixed set of rules within preset limits. The
T1 Home Computer uses especially powerful
mternal notation to represent numbers.

The mathematical tolerance of the computer is
coatrolled by the number of digits it uses for
calculations. The computer appears to use 10
digits as shown by the display, but actually uses
more to perform all calculations. When rounded
for display purposes, these extra digits help
maintain the accuracy of the values presented.
Example:

Y3 X3 =.9999999999 (inaccurate)

The example shows that '3 =.3333333333,
when multiplied by 3, produces an inaccurate
answer. However, a 13-digit string of nines,
when rounded to 10 places, will equal
1.0000000000.

The higher order mathematical functions use
iterative and polynomial calculations. The
cumulative rounding error is usually maintained
below the 10-digit display so that no effect can
be seen. The 13-digit representation of a
number is three orders of magnitude from the
displayed tenth digit. In this way the display
assures that results are rounded accurately to
ten digits.
Normally there is no need to even consider the
undisplayed digits. On certain calculations, as
with any computer, these digits may appear as
an answer when not expected. The
mathematical limits of a finite operation (word
length, truncation and rounding errors) do not
allow these digits to always be completely
accurate. Therefore, when subtracting two
expressions which are mathematically equal, the
computer may display a nonzero result.
Example:

X=y=-1h=

PRINT X

1E-14
The final result indicates a discrepancy in the
fourteenth digit.

The above fact is especially important when
writing your own programs. When testing a

calculated result to be equal to another value,
precautions should be taken to prevent
improper evaluation. For the above example,
the statement X =1E —10%INT(X*1E10)) will
truncate the undisplayed digits of the variable X
leaving only the rounded display value for
further use.

Technical Information on Number
Representation

Technically speaking, your computer uses a
7-digit Radix-100 mantissa for internal
calculations. A single Radix-100 digit has a
range of value from 0 to 99 in base-10
arithmetic. This means that a 7-digit Radix-100
number will correspond to decimal precision of
13 to 14 digits, depending on the value.

Radix-100 exponents range in value from —64
to +63 which yield decimal values of 10-128 to
10+126, The Radix-100 mantissa and exponent
combine to provide an equivalent decimal range
of from —9.9999999999999E 127 through
—1.0000000000000E —128; zero; and then
+1.0000000000000E —128 on through
+9.9999999999999E127.

The internal format of each numerical value
consists of eight bytes. The first byte contains
the exponent and its sign, biased by 40 hex. The
remaining bytes contain the mantissa, with the
most significant digit first. The number is
normalized so that the decimal point is
immediately after the most significant digit. If

the number is negative, then the first two bytes
are complemented.

Examples:

1. The number 127, is represented as:

EXP MSD LSD
41 01 1B 00 00 00 00 00

2. The fraction 0.5, is represented as:
3F 32 00 00 00 00 00 00
3.a) The value of 7/2 is represented as:
40 01 39 07 60 20 43 5F
b) The value of —7/2 is:
BF FF 39 07 60 20 43 5F

User's Reference Guide

173

Inchworm

This program creates an inchworm that moves back and forth
across the screen. When the inchworm reaches the edge of the
screen, an "uh-oh” sounds, and the inchworm turns around to go
in the opposite direction.

These statements allow you to enter a color for the inchworm (color
codes 2-3, 5-16 are recommended). The screen is then cleared. The
CALL COLOR statement assigns the color you selected to
character set 2. XDIR is used to designate which direction the
inchworm moves (+1 indicates right and —1 indicates left).

This loop moves the inchworm across the screen. Line 180
computes where the next block is to be displayed and line 190
places the new block on the screen. The DELAY loop governs how
fast the inchworm moves across the screen. Line 220 erases the old
color block (so a continuous line won't be drawn) by placing a blank
space over the block previously displayed at XOLD. Line 230
saves the current block position so a new one can then be
computed. The loop is repeated until the inchworm reaches the
edge of the screen.

Line 250 reverses the direction of the inchworm. Lines 260 and
270 produce the “"uh-oh” sound. Then line 280 causes the loop to be
performed again.

>NEW

>100
>110
>120
>130
>140
>150
>160

>170
>180
>190
>200
>210
>220
>230
>240

>250
>260
>270
>280
>RUN

REM INCHWORM

CALL CLEAR

INPUT "COLOR? “:¢
CALL CLEAR

CALL COLOR(2,C,C)
X0LD=1

XDIR=1

FOR I=1 70O 31
XNEW=XOLD+XDIR

CALL HCHAR(12,XNEW,42)

FOR DELAY=1 TO 200
NEXT DELAY

CALL HCHAR(12,x0LD,32)

XOLD=XNEW
NEXT I

XDIR=-XDIR

CALL SOUND(100,392,2)
CALL SOUND(100,330,2)

60T0 170

-=-screen clears

COLOR? 7

--screen clears

-=inchworm moves back and
forth across the screen

(Press SHIFT C to stop
the program)

176

Usar's Relorence Guid

Random Color Dots

——

b

This program places random color dots in random locations on the
screen. In addition. a random sound is generated and played when
the dot 158 placed on the screen.

The RANDOMIZE statement causes a different sequence of
numbers to be generated each time the program is run. The CALL
CLEAR statement clears the screen.

Ttus loop assigns each color code (2 through 16) to a different
character set (codes 2 through 16).

These statements generate a random musical frequency for the
CALL SOUND statement. Statement 170 generates notes from the
tempered (twelve-tone) scale.

These statements generate a random character in the range of 40
through 159 and a random row and column location. (The color of
the dot depends on the character set of the randomly chosen
character.)

These statements produce the sound and place the solid color dot
on the screen. Then the program loops back to generate a new
sound, color dot, and location.

Examples:

>NEW

>100
>110
>120

>130
>140
>150

>160
>170

>180
>190
>200

>210
>220

>230
>RUN

REM RANDOM COLOR DOTS
RANDOMIZE
CALL CLEAR

FOR c=2 70 16
CALL cOLOR(C,C,C)
NEXT C

N=INT(24%*RND)+1
Y=110%(2A(1/12))AN

CHAR=INT(120*RND)+40
ROW=INT (24*RND) +1
COL=INT(32%RND)+1

CALL SOUND(-500,Y,2)
CALL HCHAR(ROW,COL,CHAR)

GOTO 160

-- screen clears

-=-random color dots appear
on the screen at different
locations

(Press SHIFT C to stop
the program)

User’s Reference Guide

175

Secret Number

This program is a secret number game. The object is to guess the
randomly chosen number between 1.and an upper limit you input.
For each guess, you enter two numbers: a low and a high guess.
The computer will tell you if the secret number is less than, greater
than, or between the two numbers you enter. When you think you

know the number, enter the same value for both the low and high
guesses.

The RANDOMIZE statement ensures a different sequence of
numbers each time the program is run. MSG1$ and MSG2$ are
repeatedly used in PRINT statements. The CALL CLEAR
statement clears the screen.

The INPUT statement stops the program and waits for you to enter
a limit. Then the secret number is generated, and the screen is
cleared. N is used to keep track of the number of guesses you
make.

This INPUT statement accepts your low and high guesses. If you
enter the same number for both guesses and you guess the secret
number, the program transfers to line 300. If the secret number is
less than your low number, the program transfers to line 260. If the
secret number is greater than your high number, the program
transfers to line 380. If the secret number 1s between your two
numbers or equal to one of your numbers, the program continues.

These statements print a message to tell you where the secret
number is in relation to your guesses. Then the program transfers
to line 180 to allow you to guess again. If you guessed the secret
number, the computer tells you how many guesses you took.

Examples:

>NEW

>100 REM SECRET NUMBER
>110 RANDOMIZE
>120 MSG1$="SECRET NUMBER IS"

>130 MSG2$="YOUR TWO NUMBERS”

>140 CALL CLEAR

>150 INPUT "ENTER LIMIT? ":L1
MIT

>160 SECRET=INT(LIMIT*RND)+1
>170 CALL CLEAR

>180 N=N+1

>190 INPUT "LOW,HIGH GUESSES:
":LO0W,HIGH

>200 IF LOW<>HIGH THEN 220

>210 IF SECRET=LOW THEN 300

>220 IF SECRET<LOW THEN 260

>230 IF SECRET>HIGH THEN 280

>240 PRINT MSG1$S&"” BETWEEN":NW
SG2%

>250 6OTO 180

>260 PRINT MSGI1SE"™ LESS THAN"
tMSG2S

>270 6OTO 180

>280 PRINT MSG1$SE8"™ LARGER THA
N*'":MSG2S

>290 6OT0 180

>300 PRINT "YOU GUESSED THE §
ECRET"

>310 PRINT "NUMBER IN ";N;"TR
1IES"

178

Marquee

This program puts a marquee on the screen. The colors are
produced randomly, and a tone sounds each time a color bar is
placed on the screen.

These statements clear the screen and assign each character set (2
through 16) to a different color. The RANDOMIZE statement
ensures that a different set of colors will be produced each time the
program Is run.

These statements produce a border for the marquee.

This loop places color bars on the screen moving from left to right
(columns 3 through 30). Each time a bar is placed on the screen, a
tone sounds. The negative duration allows the sound to be cut off
and a new sound to begin each time the CALL SOUND statement
is performed. The subroutine beginning at line 310 generates the
random colors and tones.

This loop is the same as the loop in lines 200 through 240 except
that the color bars are placed on the screen moving from the right
to the left. These color bars are placed below those generated by
the previous loop. When the loop is finished, the program transfers
to line 200 to begin at the left again.

This subroutine generates a random character (thus also generating
a random color) for the CALL VCHAR statements (lines 220, 270).
The assignment statements in lines 320 and 330 generate a random
tone. The RETURN statement transfers the program to the
statement following the GOSUB (lines 210, 260).

Examples:

>NEW

>100 REM MARQUEE

>110 RANDOMIZE

>120 CALL CLEAR

>130 FOR $=2 T0 16
>140 CALL COLOR(S,S,S)
>150 NEXT S

>160 CALL HCHAR(?7,3,64,28)

>170 CALL HCHAR(16,3,64,28)

>180 CALL VCHAR(7,2,64,10)

>190 CALL VCHAR(7,31,64,10)

>200 FOR A=3 TO 30
>210 GOsuB 310

>220 CALL VCHAR(8,A,C,4)
>230 CALL SOUND(-150,Y,2)

>240 NEXT A

>250 FOR A=30 TO0 3 STEP -1

>260 60OsuB 310

>270 CALL VCHAR(12,A,C,4)
>280 CALL SOUND(-150,Y,2)

>290 NEXT A
>300 GOTO 200

>310 C=INT(120*RND)+40
>320 N=INT(24%RND)+1
>330 Y=220*(2A(1/12))AN
>340 RETURN

>RUN

--screen clears
--marquee appears

(Press SHIFT C to stop
the program)

User's Reference Guide

177

Bouncing Ball

This program moves a ball and bounces it off the edges of the
screen. Each time the ball hits any side, a tone sounds. and the ball

i; deflected. The following special character is used to define the
all.

Block
Codes

3C
7E
FF
FF
FF
FF
7E
3C

ol Ead bl
o fad b Cad fad b
ol tal tal el el tal bl sl
o fad bl il

ol tad fad fad el Ca

o Pl] P Pl Pl P
o Eal Cal el el e e

ol bl tad tall tal fad (el b

These statements clear the screen and define character 96 as the
ball.

These statements allow you to input the color of the ball and the
screen background color. Note that defining the screen color by
using character set 1, which includes character 32 (the blank
space), gives definite limits for the screen edge. The screen is
cleared when the colors have been entered.

These statements give the starting position for the ball and set the
parameters which will control the X and Y direction.

These statements compute the next ball position. The direction the
ball moves depends on the current values of XDIR (+1 indicates
right. —1 indicates left) and YDIR (+1 indicates up. —1 indicates

down).

These statements test to see if the new ball position is still on the
screen. If either the row (Y) or column (X) value is out of range,
then the program transfers to line 310 (column out of range) or line
360 (row out of range) to change the ball direction.

>NEW

>100
>110
>120

REM BOUNCING BALL
CALL CLEAR
CALL CHAR(96,"3C7EFFFFFF

FF7E3C")

>130
>140

>150
>160
>170

>180
>190
>200
>210

>220
>230

>240
>250
2260
>270

INPUT "BALL COLOR? ":C
INPUT "SCREEN COLOR? ™:S

CALL CLEAR
CALL COLOR(9,C,S)
CALL COLOR(1,S,S)

X=16
Y=12
XDIR=1
YDIR=1

X=X+XDIR
Y=Y+YDIR

IF X<1 THEN 310
IF X>32 THEN 310
IF Y<1 THEN 360
IF Y>24 THEN 360

180

User's Reference Guide

These statements offer you the choice of playing again or stopping
the program. If you enter any character other than Y, the program
ends. If you wish to play again, the counter for the number of
guesses is set to zero. and you are asked if you want to set a new
kmit. If you enter Y, the program transfers back to line 140. If you
enter any other character, the program transfers to line 160 to
geoncrate a new secret number.

Here is a sample of the program run. (Of course, your secret
numbers will be different from the one shown here.)

Exampies:

320 PRINT "WANT TO PLAY AGAl
N?"

>330 INPUT "ENTER Y OR N: ":A
$

340 IF A$<>"Y" THEN 390

>350 N=0

360 PRINT "WANT TO SET A NEW
LIMIT2"

>370 INPUT "ENTER Y OR N: ":B
$

>380 IF B$="Y" THEN 140 ELSE
160

>390 END

>RUN

~-screen clears
ENTER LIMIT? 20
--screen clears

LOW,HIGH GUESSES: 1,10
SECRET NUMBER IS BETWEEN
YOUR TwO NUMBERS

LOW,HIGH GUESSES: 1,5
SECRET NUMBER IS LARGER THAN
YOUR TWO NUMBERS

LOW,HIGH GUESSES: 7,7
YOU GUESSED ' THE SECRET
NUMBER IN 3 TRIES
WANT TO PLAY AGAIN?
ENTER Y OR N: N

*% DONE *=*

179

Checkbook Balance

Once each month all of us have the opportunity to tackle
“balancing” our checkbooks against our bank statements.
Normally, the checkbook balance will not agree with the balance
shown on the bank statement because there are checks and
deposits that haven't cleared yet. This program will help you
balance your checkbook quickly and easily.

These statements clear the screen and allow you to input the
balance shown on your bank statement.

These statements give instructions for entering your outstanding
check numbers and amounts. Note that DISPLAY and PRINT
can be used interchangeably.

This loop sets up the procedure for entering each check number
and amount. These values are stored in arrays. If the check number
equals zero, the program transfers out of the loop. CTOTAL is the
total amount of outstanding checks. Each time a check amount is
input, the program transfers to line 190 to input another check
number and amount.

These statements give instructions for entering your outstanding
deposits.

This loop asks for and accepts each outstanding deposit amount. If
the deposit amount equals zero, the program transfers out of the
loop. DTOTAL is the total amount of outstanding deposits. After
each outstanding deposit is added to the total, the program
transfers to line 310 to accept another deposit amount.

>NEW

>100 REM CHECKBOOK BALANCE
>110 CALL CLEAR

>120 INPUT "“BANK BALANCE? ":B
ALANCE

>130 DISPLAY "ENTER EACH OUTS
ANDING"

>140 DISPLAY "CHECK NUMBER AN
D AMOUNT."

>150 DISPLAY

>160 DISPLAY "ENTER A ZERO FO
R THE"

>170 DISPLAY “CHECK NUMBER WH
EN FINISHED."

>180 DISPLAY

>190 N=N+1

>200 INPUT "CHECK NUMBER? ":(
NUM(N)

>210 IF CNUM(N)=0 THEN 250
>220 INPUT "CHECK AMOUNT? ":(
AMT(N)

>230 CTOTAL=CTOTAL+CARMT(N)
>240 6070 190

>250 DISPLAY "ENTER EACH OUTS
TANDING"

>260 DISPLAY "DEPOSIT AMOUNT.
>270 DISPLAY

>280 DISPLAY "ENTER A ZERO AM
OUNT"

>290 DISPLAY "WHEN FINISHED."

>300 DISPLAY

>310 M=M+1

>320 INPUT “DEPOSIT AMOUNT? *
:DANT (M)

>330 IF DANT(M)=0 THEN 360

>340 DTOTAL=DTOTAL*DARY (M)

>350 6070 310

182

User's Reference Guide

Souncing B

H e new ball position is still on the screen, then the screen is
cheared to erase the old ball location. The ball is then displayed at
~ the aew location designated by Y and X.

These statements change the direction of the ball if X is out of
range. The CALL SOUND statement produces the “bouncing”
tome. Lines 330 and 340 check to see if Y is also out of range. If it
is. the program transfers to change the Y direction. If not, the
program transfers to line 220 to compute a new ball position.

These statements change the direction of the ball if Y is out of
range. The CALL SOUND statement produces the “bouncing”
tone. The program then transfers to line 220 to compute the new
ball position.

Examples:

>280
>290
>300

>310
>320
>330
>340
>350

>360
>370
>380
>RUN

CALL CLEAR
CALL HCHAR(Y, X,96)
G070 220

XDIR=-XDIR

CALL SOUND(30,380,2)
IF Y<1 THEN 360

IF Y>24 THEN 360
60TO 220

YDIR=-YDIR
CALL SOUND(30,380,2)
GOTO 220

--screen clears

BALL COLOR? 5
SCREEN COLOR? 15

--ball appears in center of
screen and begins bouncing

(Press SHIFT C to stop
the program)

User’s Reference Guide

181

Codebreaker

Codebreaker is a game in which the computer generates a four-digit
code pqmber. and you try to guess it. Zeros are not allowed, and no
two digits may be the same. Even with these restrictions. there are
3024 possible codes. making slim your chances of guessing the
number on the first try. Your guess is automatically scored by the
computer. Your score for each guess is displayed in the form “N.R.”
where N is the number of digits in your trial number that appear in
the secret number and are positioned correctly and R is the number
of digits in your guess which although correct. are improperly
placed. For example. if the number generated by the computer is
8261 and you guess 6285, you receive a score of 1.2. This indicates
that one number you guessed is in the right place (the 2) and that
two of your other numbers (8 and 6) are present in the secret
number. but not in the right place. A score of 4.0 indicates that
your guess is correct.

The RANDOMIZE statement ensures that a different number will
be generated each time the program is run. After the screen is
cleared. the computer generates the four-digit number. Note that
each digit is stored separately in the array. N. The J-loop beginning
at line 160 ensures that no two digits in the number generated are
the same. The number of tries is set to zero for each new four-digit
number generated.

The INPUT statement stops the program and waits for you to enter
your guess. Be sure to enter a four-digit integer number. Each time
you guess a number, the score is set to zero. and the number of tries
is increased by one.

Line 250 takes the last digit from the guess so that it may be
compared against the code number. If the digit matches the code
number in the same position, then the score is increased by 1. If
not. then the L-loop is used to compare the digit against the other
positions in the code number. If it matches any other position in the
code number. then .1 is added to the score. Line 340 eliminates the
last digit from the guess. so that the next digit can be taken for the
comparison. When all four digits have been compared. the program
continues at line 360.

Examples:

>NEW

>100
>110
>120
>130
>140
>150
>160
>170
>180
>190
>200

>210

ESS
>220
>230

>240
>250

REM CODEBREAKER GAME
RANDOMIZE

CALL CLEAR

FOR 1=1 T0 4
NCI)=INT(9*RND)+1

IF I=1 THEN 190

FOR J=1 70 I-1

IF NCID=N(J) THEN 140
NEXT J

NEXT I

TRIES=0

INPUT "ENTER GUESS? ":GU

SCORE=0
TRIES=TRIES+1

FOR K=4 TO 1 STEP -1
DIGIT=(GUESS/10-INT (GUES

$/10)) =10

>260
>270
>280
>290
>300
>310
>320
>330
>340
>350

IF DIGIT<>N(K) THEN 290
SCORE=SCORE+1

G0TO 340

FOR L=1 TO 4

IF N(L)<>DIGIT THEN 330
SCORE=SCORE+.1

G0TO 340

NEXT L
GUESS=INT(GUESS/10)
NEXT K

184

User's Reference Guide

Checkbook Balance

e

These statements compute and display the new balance. Then you
eister the current balance in your checkbook. (Be sure you have
webtracted bank service charges before you enter the current
talance.) The correction necessary to make your checkbook agree
with the bank statement is then computed and displayed.

Here is a sample program run.

Examples:

>360 NBAL=BALANCE-CTOTAL+DTOT

AL
>370 DISPLAY "NEW BALANCE=
NBAL

0",
’

>380 INPUT “CHECKBOOK BALANCE

? “:CBAL

>390 DISPLAY "CORRECTION= “;N

BAL-CBAL
>400 END

>RUN
--screen clears
BANK BALANCE? 940.26

ENTER EACH OUTSTANDING
CHECK NUMBER AND AMOUNT.

ENTER A ZERO FOR THE
CHECK NUMBER WHEN FINISHED

CHECK NUMBER? 212
CHECK AMOUNT? 76.83
CHECK NUMBER? 213
CHECK AMOUNT? 122.87
CHECK NUMBER? 216
CHECK AMOUNT? 219.50
CHECK NUMBER? 218
CHECK AMOUNT? 397.31
CHECK NUMBER? 219
CHECK AMOUNT? 231.00
CHECK NUMBER? 220
CHECK AMOUNT? 138.25
CHECK NUMBER? 0
ENTER EACH OUTSTANDING
DEPOSIT AMOUNT.

ENTER A ZERO AMOUNT
WHEN FINISHED.

DEPOSIT AMOUNT? 450
DEPOSIT AMOUNT? 0O
NEW BALANCE= 204.5

CHECKBOOK BALANCE? 209.1S
CORRECTION= -4.65

** DONE %

User's Reference Guile

183

Character Definition

This program allows you to define special graphics characters using
the computer. An 8 X8 grid is displayed on the screen. You then
choose which "dots” to turn on and which to leave turned off. After
the character has been designed, the program determines and

displays the HEX string to be entered in the CALL CHAR
statement.

These statements define the off dot character (line 120) and the on
dot character (line 130). Black is used as the foreground color (on
dot) and white is used as the background color (off dot). The screen
is then cleared and the labels needed on the screen are displayed at
the necessary locations. Note that the subroutine beginning at line
770 is used to print a string horizontally on the screen and the
subroutine beginning at line 820 is used to print a string vertically
on the screen. The R-loop is used to place the 8 x 8 grid (all dots
turned off) on the screen.

This loop allows you to turn the "dots” either on or off. To turn a
dot on, press the 1 key. To leave a dot turned off, press the 0 key.
The cursor starts in the upper left corner (row 1, column 1) of the
grid. Each time you press a key, the dot is turned on or off and the
cursor moves to the next position. When the end of a row is
reached, the cursor automatically moves to the next row. When the
last "dot” is turned on or off, the program continues to determine
the HEX string. Line 430 performs a logical OR. If the key you
pressed was not a zero or a one, the program transfers back to line
370 to accept a new key input. Errors in the grid can be corrected
before the last dot (row 8, column 8) is entered by using the LEFT
arrow and RIGHT arrow keys. If either of these keys is pressed,
then the program transfers to the subroutine beginning at line 870.
The subroutine moves the cursor in the appropriate direction and to
the next row up or down as necessary.

These statements determine the hexadecimal code for each row in
the grid. When the code is determined, character 102 is defined to
be the character shown on the large grid. The newly defined
character is then displayed on the screen at row 8, column 20. The
character is also displayed in a 3-by-3 pattern. Then the
hexadecimal code defining that character is displayed. Lines 630
through 720 print instructions on the screen for you to define a new
character. If you are finished defining characters, press Q and the
program stops. If you press any other kcy.' the program transfers to
line 140 to clear the screen and begin again.

Examples:

>NEW
>100 REM CHARACTER DEFINITION

>110 oINn B(8,8)

>120 CALL CHARC(100,"")

>130 CALL CHARCI01,"FFFFFFFFF
FFFFFFF"™)

>140 CALL COLOR(9,2,16)

>150 CALL CLEAR

>160 MS$S="AUTO CHARACTER DEFIN
ITION"

>170 Y=3

>180 X=4

>190 60sSuB 770

>200 M$="12345678"

>210 Y=8

>220 GOsuB 770

>230 60OsuB 820

>240 MS$S="0=0FF=WHITE"

>250 Y=22

>260 X=4

>270 GOsuB 770

>280 M$="1=0N=BLACK"

>290 Y=23

>300 GOsSuB 770

>310 FOR R=1 10 8

>320 CALL HCHAR(8+4R,5,100,8)

>330 NEXT R

>340 FOR R=1 TO0 8

>350 FOR Cc=1 TO0 8

>360 CALL HCHAR(B+R,4+C,30)

>370 CALL KEY(O,KEY,STATUS)

>380 IF STATUS=0 THEN 370

>390 IF (KEY<>8)+(KEY<>9)=-2
THEN 420

>400 60suB 870

>410 60TO0 360

>420 KEY=KEY-48

>430 IF (KEY<O)+(KEY>1)<=-1 T
HEN 370

>440 B(R,C)=KEY

>450 CALL HCHAR(B+R,4+(_,100+K
EY)

>460 NEXT C

>470 NEXT R

>480 HEX$="0123456789ABCDEF"

>490 ms=""

>500 FOR R=1 T0 8

>510 LOW=B(R,S)*84B(R,2)*4+8(
R,7)%2+p(R,8)+1

>520 HIGHSB(R,1)28+B(R,2)s4+P
(R,3)#2+B(R,4)*1

>530 NSaMSLSECS(HEXS MIGH,1)8
SECGS(HEXS ,LON,1)

>540 NEXT R

>550 CALL CHAR(102,mS8)

>560 CALL WCHAR(S, 20,102)

>570 FOR R=0 TO0 2

580 CALL WCHAR(12+R,20,102,3
)

>S90 NEXT R

186

User's Reference Guide

Codebreaker

These statements print the score for each guess. Strings are used in
displaying the score to insure that the score is always displayed in
the "N.R ~ format. If the score is an integer number. then a ".0" (line
370) must be added after the number. If the score is less than one.
then a "0 (line 400) must be added before the number. If the score
5 a non-integer and greater than one. then just the score itself is
printed {line 420). If the score is not equal to 4. the program
transfers to line 210 to accept another guess.

These statements print the number of tries you took to guess the
code number. Then the computer asks if you want to play again. If
you enter Y. the program transfers to line 110 to generate a new
sumber. If you enter anything else. the program stops.

Here is a sample of a program run. (Of course. your code numbers
will be different.)

Examples:

>360 IF INT(SCORE)<>SCORE THE
N 390

>370 PRINT STRS(SCORE)E".0"
>380 6070 430

>390 IF SCORE>1 THEN 420

>400 PRINT "O0"ESTRS(SCORE)
>410 GOTO 430

>420 PRINT STR$(SCORE)

>430 IF SCORE<>4 THEN 210

>440 PRINT "vyQu TOOK "&STRS(T
RIES)&"™ TRIES TO GUESS"™
>450 PRINT "THE CODE NUMBER."

>460 DISPLAY "wOuLD YOU LIKE
TO PLAY AGAIN"

>470 INPUT "ENTER Y OR N: ":A
3

>480 IF A$="Y" THEN 110

>490 END

>RUN
~--screen clears

ENTER GUESS? 1234

0.1

ENTER GUESS? 5678

2.1

ENTER GUESS? 9238

1.0

ENTER GUESS? 5694

1.0

ENTER GUESS? 5198

2.1

ENTER GUESS? 5718

4.0

YOU TOOK 6 TRIES TO GUESS
THE CODE NUMBER.

WOULD YOU LIKE TO PLAY AGAIN
ENTER Y OR N: N

** DONE *=*

185

Graphics Match

This game program gives an example of developing special
graphics for your own use. There are six different graphics
characters defined. These are: heart, cherry, bell, lemon, diamond,
and bar. To play the game you need only to run the program. The
computer generates three random numbers in the range 1 through
6. Each time a number is generated, the picture corresponding to
the number is displayed on the screen. Scoring depends on how
many and in what way the three pictures match. When the three
pictures and the score have been displayed, you are offered the
choice of playing again.

These statements define the colors for each of the characters. The
colors used are:

Graphics

Character Color

Heart Medium Red

Cherry Medium Red with
Dark Green stem

Bell Light Blue with
Black handle

Lemon Dark Yellow

Diamond Dark Green

Bar Dark Blue

A white background is used for all of the pictures.

These statements define the heart.

Block Block
Codes Codes
00 00
00 00
1C XXX X[X|X 38
3E XX XXX X X| XXX 7C
7F | [X[X[X[X X X[X]X]| X] X| X[X|X]|X FE
7F XIXIXIXIX| XXX X] X]X]|X]X]|X FE
7F XX XXX X[X][X]X] XX X|X]X FE
7F XIXXIXIXIXIXIXIXXXX[X|X FE
3F X XXX XXX X[X]| X[X[X FC
1F XX XX XXX XX F8
oF XIXIXIXIX|X[X]|X FO
07 XIX]|XIX|X EO
03 XXX X Co
01 X|X 80
00 00
00 00

Examples:

>NEW

>100 REM GRAPHICS MATCH

>110 CALL
>120 CALL
>130 CALL
>140 CALL
>150 CALL
>160 CALL

>170 CALL
TF7F7F")
>180 CALL
FEFEFE")
>190 CALL
01")
>200 CALL
80")

COLOR(9,7,16)
COLOR(10,13,16)
COLOR(11,2,16)
COLOR(12,6,16)
COLOR(13,11,16)
COLOR(14,5,16)

CHAR(96,"00001C3E7F
CHAR(97,"0000387CFE
CHAR(98,"3F1FOFO703

CHAR(99,"FCFBFOEOCO

188

User's Refereace Guide

Character Definition

These subroutines print a given string beginning at a specified row
and column on the screen. Lines 770 through 810 print a string
horizontally. Lines 820 through 860 print a string vertically.

This subroutine is used to allow you to change the dots you have
turned on or off. First. the new cursor location is checked. If the
cursor is at the end of the line and the RIGHT arrow key is
pressed. the cursor moves to the left side of the next line down. If
the cursor is at the beginning of the line and the LEFT arrow key
is pressed, the cursor moves to the right side of the next line up. If
the cursor 1s at the upper left corner and the LEFT arrow key 1s
pressed. the cursor moves to the lower right corner. If the cursor is
at the lower right corner and the RIGHT arrow key is pressed, the
cursor moves to the upper left hand corner.

A sample of the screen for a program run is shown at the right.

Examples:

>600 Y=16

>610 x=12

>620 60suB 770

>630 M$="PRESS Q@ TO QUIT”

>640 Y=18

>650 Xx=12

>660 60suB 770

>670 M$="PRESS ANY OTHER"

>680 Y=19

>690 60suB 770

>700 M$="KEY TO CONTINUE"

>710 Y=20

>720 60suB 770

>730 CALL KEY(O,KEY, STATUS)

>740 IF STATUS=0 THEN 730

>750 IF KEY<>81 THEN 140

>760 STOP

>770 FOR I=1 TO LEN(MS)

>780 CODE=ASC(SEGS(MS,I, 1))

>790 CALL HCHAR(Y, X+I1,CODE)

>800 NEXT I

>810 RETURN

>820 FOR I=1 TO LEN(MS)

>830 CODE=ASC(SEGS(mMS$,I,1))

>840 CALL HCHAR(Y+I_ X, CODE)

>850 NEXT I

>860 RETURN

>870 CALL HCHAR(B+R,4+C,100+B
(R,C))

>880 IF KEY=9 THEN 960

>890 c=C-1

>900 IF C<>0 THEN 1020

>910 =8

>920 R=R-1

>930 IF R<>0 THEN 1020

>940 R=8

>950 60T0 1020

>960 C=C+1

>970 IF €C<>9 THEN 1020

>980 c=1

>990 R=R+1

>1000 IF R<>9 THEN 1020

>1010 R=1

>1020 RETURN

>RUN

=--screen clears

7~
AUTO CHARACTER DEFINITION

112345678 1]

2

: 11|

4

5

6

! FOFOFOFOFOFOFOFO

PRESS Q@ TO QuIT
0=0FF=WHITE PRESS ANY OTHER

1=0N=BLACK KEY TO CDNTINUE-J

User's Reference Guide

187

Graphics Match

These statements define the lemon.

B]OCk BlOCk
COdeS Codes
00 00
00 | 00
00 | 00
03 X[X|x|x Co
OF X[X[X[XIX[X[X]IX Fo
1F XXX [X[X[X[X[X] XX F8
3F XX XXX XXX X]X[X]X FC
FF I X [X[X] XX X[X[X[X[X|X[X[XIX[X[X| FF
FF X X[X[XX XX XXX XX XX|XIX| FF
3F XXX XX XIX[X]X[X]X]X FC
1F X X X[X[X]X]|X[X]X[X F8
OF X[XXIX|IX[X|X]|X FO
03 X XXX Co
00 00
00 00
00 00
These statements define the diamond.
Block Block
Codes Codes
00 00
01 X|X 80
03 X[X[X[X Co
07 XIX|X[X[X]X EO
OF X[X[X[XIX][X|X]X FO
1F XX X[X[XIX[X[X]X[X F8
3F XXX X[XXIX[X]X[X]X[X FC
7F [I X[XIXXIX[X[X|X|X[X]|X[X|X[X] |FE
7 X IXXIX XX XX XIX[X]X|XIX] [FE
3F XIX|X[XIXIXIX]| X|X]|X[X]X FC
1F XIXIXIXX[X[X]X[X]X F8
OF X[X[XIXIX[X[X]X FO
07 X(X[X[XIX[X EO
03 XXX Co
01 80
00 00

Examples:

>290 CALL CHAR(128,7000000030
F1F3FFF")

>300 CALL CHAR(129,"000000COF
OFBFCFF")

>310 CALL CHARC130,"FF3F1FOFO
3"

>320 CALL CHAR(131,"FFFCF8FOC
0")

>330 CALL CHAR(105,"000103070
FIF3F7F™)

>340 CALL CHAR(106,"0080COEOF
OF8FCFE")

>350 CALL CHARC107,"7F3F1FOFO
70301")

>360 CALL CHAR(108,"FEFCF8FOE
0co80")

190

User's Refarence Guide

Graphics Match

Note that in lines 190 and 200. the last four zeros are omitted.
This saves time in entering the lines since the computer
automatically fills the remaining length of the string with zeros.

These statements define the cherry.

Examples:

>210 CALL CHAR(100,"000000000

Bilock Block 01F3FTF")) 06081
Codes Codes ’35843355,‘”‘““°" 0000
“7FTF7FTF3
00 00 >E§21Eﬁ§L CHAR(101,"7F7F7F
00 00 >240 CALL CHAR(102,"EOFOFOFOF
00 06 0E0CO")
00 08
00 X 10
1F X[X[X[X]|X X 20
3F X|XIX[X]X]X] X 40
7F | IXIXIX[X][X]X]X]|X 80
7F XIX[X[X|X|X[XIX[X]|X EO
7F XIXIX[X]X|XIX]X]|X]|X]|X Fo
7F XIXIXIX]X]X[XIX{X]|X]|X FoO
7F XIXIX[XIX|XIXIX[X[X]|X FO
3F XIXIXIXIXIXIX[X[X[X FO
3F XIX[XIX|X[X]|X]X]X EO
1F XIXIXIX|XIX]|X Co
00 00
These statements define the bell. >250 CALL CHAR(112,"000001010
1010101")
>260 CALL CHAR(113,"000080808
0808080")
ég:;: 52222 >$;go§8:t)cnnn(120,"030707070
38 00 >g§gEgg;&)CHAR(121,"C0E0E0EOE
00
01 XX 80
01 XX 80
01 XX 80
01 XX 80
01 XX 80
01 XX 80
03 XIX|X|[X Cco
07 X XIXIX| XX Eo
07 XIXIXIX|X[X EO
07 XX XIX|X|X EO
07 X[XIX|X][X[X EO
OF XIX[X[X]X]|X|X|X Eo
07 X[XIX|X|X[X EO
o1 X|X 80
User's Reference Guide T80

Graphics Match

These statements determine the score you receive, as outlined in
the table below. The line number indicates the line to which the
program transfers to award the points.

Line
Match Points Number
All pictures alike Win 75 700
First two pictures, a Win 40 550
cherry, lemon, or bar
First two pictures a Win 10 650
heart, bell, or diamond
First and last pictures alike Win 10 650
No match or last two pictures alike Lose 10 610

These statements add 40 points to the accumulated score. Three
tones sound and a message is displayed on the screen to indicate
you have won a bonus worth 40 points. The program then transfers
to line 770 to display the total points accumulated.

In line 610, ten points are subtracted from the total score. A tone
sounds and a message is displayed to indicate you have lost ten
points. The program then transfers to line 770 to display the new
score.

In these statements, ten points are added to the total score. To
indicate that you have won ten points, two tones sound and a
message is displayed. Then the program transfers to line 770 to
display the new score.

These statements add 75 points to the total score. Five tones sound
and a message indicating that you have won the jackpot is
displayed.

The PRINT statement in line 770 prints your current score. The
other statements offer you the choice of playing again or stopping
the program.-The CALL KEY statement (line 800) accepts an
answer without your having to press ENTER. Pressing the ¥ key
instructs the program to transfer back to line 410 to generate three

new pictures. Pressing any other key stops the program.

Examples:

>490 REM SCORING
>500 IF PIC(1)<OPIC(2) THEN 5

20
>510 1F PIC(2)=PIC(3) THEN 70
0 ELSE 540
>520 IF PICC1)<OPIC(3) THEN 6
10

>530 GOTO 650
>540 IF PICC1)/2<>INT(PIC(1)/
2) THEN 650

>550 TOTAL=TOTAL+40

>560 CALL SOUND(100,440,2)
>570 CALL SOUND(100,660,2)
>580 CALL SOUND(100,550,2)
>590 PRINT "BONUS--40 POINTS”

>600 GOTO 770

>610 TOTAL=TOTAL-10

>620 CALL SOUND(100,110,1)
>630 PRINT "LOSE 10 POINTS"
>640 GOTO 770

>650 TOTAL=TOTAL+10

>660 CALL SOUND(100,660,2)
>670 CALL SOuND(100,770,2)
>680 PRINT "WIN 10 POINTS"™
>690 60TO0 770

>700 TOTAL=TOTAL+7S

>710 CALL SOUND(100,440,2)
>720 CALL SOuUmD(100,550,2)
>730 CALL SOUND(100,440,2)
>740 CALL SOUND(100,660,2)
>750 CALL SOUND(100,880,2)
>760 PRINT “JACKPOT!=-~75 POIN

18"

>770 PRINT “CURRENT TOTAL POL
NTS: ";TOTAL

>780 PRINT "WANT TO0 PLAY AGAl
NT®

5790 PRINT “PRESS Y FOR YES”
>800 CALL KEY(O,KEY, STATUI)
>810 1F STATUS=Q TMEN 8OO
>820 IF KEY=89 THEN 410

>830 EnD

192

User's Refivence Guide

Graphics Match

These statements define the bar. Examples:
>370 CALL CHAR(136,"000000000
Block Block >°3F3F3F") AR(137,"000000000
Codes codes gggFg:th)CH (138"'3F3F3F")
> p
0 0 i AL RS
00 00
00 00
00 00
3F XXX X XXX XX X[XX FC
3F XXX [{X[X XIX]|X]|X[X[X[X FC
3F X XX X|X X X[X[X|X FC
3F XXX XXX XX X|X[{X]|X FC
3F XIXIXIXIXIXIX| X|X[X[X]|X FC
3F XX XX X|IX] X[X| X XXX FC
00 00
00 00
00 00
00 00
00 00
The RANDOMIZE statement insures that a different sequence of >410 RANDOMIZE
pictures is generated each time the program is run. The variable C :Zgg g_‘; I{z': CLEAR
indicates the starting column location for the next picture. The I- >440 FOR I=1 TO 3
loop generates a random number between 1 and 6, inclusive. The >450 PICCI)=INT(6%RND)+1
ON-GOSUB statement (line 460) transfers the program to the ”;28 ggzglﬁégg ??;S,:;B 840,900,
appropriate subroutine to place the picture on the screen. The >470° C=C+2 :
pictures are displayed according to the following values: >480 NEXT I
PIC(D) Picture
1 Heart
2 Cherry
3 Bell
4 Lemon
5 Diamond
6 Bar
After the picture is placed on the screen, the program returns to the
loop to generate a new number and picture. When three pictures
are displayed. the program continues to score the results.

User's Reference Guide o1

Graphics Match

Here‘is a sample_program run. Note that the computer screen
remains cyan while the computer generates the symbol table and

scans the program for errors (see page 168). This takes about a
minute.

Examples:
>RUN

==gcreen clears

——

| \ A4

N

-=-tw0o tones sound

vVevw

WIN 10 POINTS
CURRENT TOTAL POINTS: 10
WANT TO PLAY AGAIN?

PRESS Y FOR YES

PRESS Y FOR YES N

#% DONE w#

194

These six subroutines print each of the six pictures. The RETURN
statements are used so that only one picture will be printed for each
call w a subroutine.

>840
>850
>860
>870
>880
>890
>900
>910
>920
>930
>940
>950
>960
>970
>980
>990
>1000
>1010
>1020
>1030
>1040
>1050
>1060
>1070
>1080
>1090
>1100
>1110
>1120
>1130
>1140
>1150
>1160
>1170
>t1180
>1190

REM PRINT HEART

CALL HCHAR(12,C,96)
CALL HCHAR(12,C+1,97)
CALL MCMAR(13,C,98)
CALL HCHAR(13,C¢1,99)

RETURN
REM PRINT CHERRY

CALL NCHAR(12,C,100)
CALL HCHAR(12,C+1,104)
CALL NCHAR(13,C,101)
CALL HCHAR(13,C+1,102)

RETURN

REM PRINT BELL
CALL HCHAR(12,C,112)
CALL HCHAR(12,C+1,113)
CALL HCHAR(13,¢,120)
CALL HCHAR(13,C+1,121)
RETURN

REN PRINT LEMON

CALL HCHAR(12,C,128)
CALL HCHAR(12,C+1,129)
CALL HCHAR(13,C,130)
CALL HCHAR(13,C+1,131)
RETURN

REM PRINT DIAMOND

CALL HCHAR(12,C,105)
CALL HCHAR(12,C+1,106)
CALL HCMAR(C13,C,107)
CALL HCHAR(13,C+1,108)
RETURN

REM PRINT BAR

CALL HCHAR(12,C,136)
CALL HCHAR(12,C+1,137)
CALL HCHAR(13,C,138)
CALL HCMAR(13,C+1,139)
RETURN

193

Glossary

Display — (noun) the home computer screen;

(verb) to cause characters to appear on the
screen.

Edit Mode — the mode used to change existing
program lines. The EDIT mode is entered by
using the Edit Command or by entering the line
number followed by SHIFT [1]or SHIFT [1]. The
line specified is displayed on the screen and
changes can be made to any character* using
special keys described on page 66.

End-of-file — the condition indicating that all
data* has been read from a file*.

Execute — to run a program; to perform the
task specified by a statement* or command*.

Exponent — a number indicating the power to
which a number or expression* is to be raised;
usually written at the right and above the
number. For example, 2% =2x2x2x2x2x2x2x2.
In TI BASIC the exponent is entered following
the A symbol or following the letter "E” in
scientific notation*. For example, 2°=2 A 8;
1.3 x 10¥=1.3E25.

Expression — a combination of constants,
variables, and operators which can be evaluated
to a single result. Included are numeric, string,
and relational expressions.

File — a collection of related data records
stored on a device; also used interchangeably
with device* for input/output equipment which
cannot use multiple files, such as a line printer.

Fixed-length records — records in a file* which
are all the same length. If a file has fixed-length
records of 95 characters, each record will be
allocated 95 bytes* even if the data* occupies
only 76 positions. The computer will add
padding characters on the right to ensure that
the record has the specified length.

Function — a feature which allows you to
specify as "single” operations a variety of .
procedures, each of which actually contains a
number of steps; for example, a procedure to
produce the square root via a simple reference

name.

*See definition in Glossary.

Graphics — visual constructions on the screen.
such as graphs, patterns, and drawings, both
stationary and animated. TI BASIC has built-in
subprograms which provide easy-to-use color
graphic capabilities.

Graphics line — a 32-character line used by the
TI BASIC graphics subprograms.

Hardware — the various devices which
comprise a computer system, including memory,
the keyboard, the screen, disk drives, line
printers, etc.

Hertz (Hz) — a unit of frequency. One
Hertz =one cycle per second.

Hexadecimal — a base-16 number system using
16 symbols, 0-9 and A-F. It is used as a
convenient "shorthand” way to express binary*
code. For example, 1010 in binary = A in
hexadecimal, 11111111 = FF. Hexadecimal is
used in constructing patterns for graphics
characters in the CALL CHAR subprogram.

Immediate mode — see Command Mode.

Increment — a positive or negative value which
consistently modifies a variable*.

Input — (noun) data* to be placed in computer
memory; (verb) the process of transferring data
into memory.

Input line — the amount of data* which can be
entered at one time. In TI BASIC, this is 112
characters.

Internal data-format — data* in the form used
directly by the computer. Internal numeric data
is 8 bytes* long plus 1 byte which specifies the
length. The length for internal string data is one
byte per character in the string* plus one length-

byte.

Integer — a whole number, either positive,
negative, or zero.

I/0 - Input/Output; usually refers to a device
function. 1/0 is used for communication
between the computer and other devices (e.g,
keyboard, disk).

196

User's Reference Guide

Glossary

Accessory devices — additional equipment
which attaches to the computer and extends its
functions and capabilities. Included are
preprogrammed Command Modules* and units
which sénd. receive or store computer data,
such as printers and disks. These are often
called peripherals.

Array — a collection of numeric or string
variables, arranged in a list or matrix for
processing by the computer. Each element in an
array is referenced by a subscript* describing its
position in the list.

ASCII - the American Standard Code for
Information Interchange, the code structure
used internally in most personal computers to
represent letters, numbers, and special
characters. (See list on page 163.)

BASIC — an easy-to-use popular programming
language used in most personal computers. The
word BASIC is an acronym for "Beginners All-
purpose Symbolic Instruction Code.”

Baud — commonly used to refer to bits per
second.

Binary — a number system based on two digits,
0 and 1. The internal language and operations
of the computer are based on the binary system.

Branch — a departure from the sequential
performance of program statements. An
unconditional branch causes the computer to
jump to a specified program line every time the
branching statement is encountered. A
conditional branch transfers program control
based on the result of some arithmetic or logical

operation.

Breakpoint — a point in the program specified
by the BREAK command where program
execution can be suspended. During a
breakpoint, you can perform operations in the
Command Mode* to help you locate program
errors. Program execution can be resumed with
a CONTINUE command, unless editing took
place while the program was stopped.

Beffer — an area of computer memory for
temporary storage of an input or output record.

*See definition in Glossary.

Bug — a hardware defect or programming error
which causes the intended operation to be
performed incorrectly.

Byte — a string of binary* digits (bits) treated as
a unit, often representing one data character*.
The computer’s memory capacity is often
expressed as the number of bytes available. For
example, a computer with 16K bytes of memory
has about 16,000 bytes available for storing
programs and data.

Character — a letter, number, punctuation
symbol, or special graphics symbol:

Command — an instruction which the computer
performs immediately. Commands are not a
part of a program and thus are entered with no
preceding line number.

Command Mode — when no program is
running, the computer is in the Command (or
Immediate) Mode and performs each task as it
is entered.

Command Modules — preprogrammed ROM*
modules which are easily inserted in the TI
Home Computer to extend its capabilities.

Concatenation — linking two or more strings*
to make a longer string. The "&" is the
concatenation operator.

Constant — a specific numeric or string* value.
A numeric constant is any real number, such as
1.2 or —9054. A string constant is any
combination of up to 112 characters enclosed in
quotes, such as " HELLO THERE" or "275
FIRST ST."

Cursor — a symbol which indicates where the
next character* will appear on the screen when
you press a key.

Data — basic elements of information which are
processed or produced by the computer.

Default — a standard characteristic or value
which the computer assumes if certain
specifications are omitted within a statement* or
a program*.

Device (see Accessory Devices)

Disk — a mass storage device capable of
random and sequential access.

User's Reference Gulc

195

Glossary

Resgrved word — in programming languages, a
special word with a predefined meaning. A
_reserved word must be spelled correctly, appear
in the proper order in a statement* or

command*, and cannot be used as a variable*
name.

ROM - read-only memory; certain instructions
for the computer are permanently stored in
ROM and can be accessed but cannot be

changed. Turning the power off does not erase
ROM.

Run Mode — when the computer is executing* a
program, it is in Run Mode. Run Mode is
terminated when program execution ends
normally or abnormally. You can cause the
computer to leave Run Mode by pressing SHIFT
C during program execution (see Breakpoint*).

Scientific notation — a method of expressing
very large or very small numbers by using a
base number (mantissa*) times ten raised to
some power (exponent*). To represent scientific
notation in TI BASIC, enter the sign, then the
mantissa, the letter E, and the power of ten
(preceded by a minus sign if negative). For
example, 3.264E4; —247E -17.

Scroll — to move the text on the screen so that
additional information can be displayed.

Software — various programs which are
executed by the computer, including programs
built into the computer, Command Module*
programs, and programs entered by the user.

Statement — an instruction preceded by a line
number in a program. IN TI BASIC, only one
statement is allowed in a program line*.

String — a series of letters, numbers, and
symbols treated as a unit.

*See definition in Gloesary.

Subprogram ~ a predefined general-purpose
procedure accessible to the user through the
CALL statement in TI BASIC. Subprograms
extend the capability of BASIC and cannot be
easily programmed in BASIC.

Subroutine — a program segment which can be
used more than once during the execution* of a
program, such as a complex set of calculations
or a print routine. In TI BASIC, a subroutine is
entered by a GOSUB statement and ends with a
RETURN statement.

Subscript — a numeric expression which
specifies a particular item in an array*. In TI
BASIC the subscript is written in parentheses
immediately following the array name.

Trace — listing the order in which the computer
performs program statements. Tracing the line
numbers can help you find errors in a program
flow.

Underflow — the condition which occurs when
the computer generates a numeric value greater
than —1E —128, less than 1E —~128, and not
zero. When an underflow occurs, the value is
replaced by zero.

Variable — a name given to a value which may
vary during program execution. You can think
of a variable as a memory location where values
can be replaced by new values during program
execution.

Variable-length records — records in a file*
which vary in length depending on the amount
of data* per record*. Using variable-length
records conserves space on a file. Variable-
length records can only be accessed
sequentially.

198

User's Reforemee Guide

Iseration - the technique of repeating a group
of program statements: one repetition of such a

Lise — see graphics line, input line, print
line, or program line.

Loop — a group of consecutive program lines
which are repeatedly performed, usually a

specified number of times.

Mantissa — the base number portion of a
aumber expressed in scientific notation*. In
3 264E +4, the mantissais 3.264.

Mass storage device — an accessory device®,
such as a cassette recorder or disk drive, which
stores programs and/or data* for later use by
the computer. This information is usually
recorded in a format readable by the computer,
not people.

Memory — see RAM, and ROM, and mass
storage device.

Module — see Command Module.

Noise — various sounds which can be used to
produce interesting sound effects. A noise,
rather than a tone, is generated by the CALL
SOUND subprogram* when a negative
frequency value is specified (—1 through —8).

Null string — a string* which contains no
characters and has zero length.

Number Mode — the mode assumed by the
computer when it is automatically generating
program line* numbers for entering or changing
statements.

Operstor — a symbol used in calculations
(numeric operators) or in relationship
comparisons (relational operators). The numeric
operators are +,—,*/,A. The relational
operators are >, <,=,>=,<= <>,

Overflow — the condition which occurs when a
rounded value greater than
9.9999999999999E 127 or less than
-9.99999009099999E 127 is entered or
computed. When this happens, the value is
replaced by the computer's limit, a warning is
displayed. and the program® continues.

Output — (noun) information supplied by the
computer; (verb) the process of transferring
information from the computer’s memory onto a
device, such as a screen, line printer, or mass
storage device®*.

Parameter — any of a set of values that
determine or affect the output of a statement* or
function*.

Print line — a 28-position line used by the
PRINT and DISPLAY statements.

Program — a set of statements which tell the
computer how to perform a complete task.

Program line — a line containing a single
statement*. The maximum length of a program
line is 112 characters*.

Prompt — a symbol (>) which marks the
beginning of each command* or program line*
you enter; a symbol or phrase that requests
input from the user.

Pseudo-random number — a number produced
by a definite set of calculations (algorithm) but
which is sufficiently random to be considered as
such for some particular purpose. A true
random number is obtained entirely by chance.

Radix-100 — a number system based on 100.
See the information on number representation
on page 173.

RAM - random access memory; the main
memory where program statements and data*
are temporarily stored during program
execution*. New programs and data can be read
in, accessed, and changed in RAM. Data stored
in RAM is erased whenever the power is turned
off or BASIC is exited.

Record — (noun) a collection of related data
elements, such as an individual'’s payroll
information or a student's test scores. A group of

similar records, such as a company's payroll
records, is called a file*.

*See definition in Glossary.

User's Refereace Guide

197

Monitor-Console Connection

Connect Computer and Monitor Power Cords

Next, you'll connect the power cord (with transformer) to the
computer. Connect the small 4-pin plug end into the outlet on the
back of the computer as indicated below. Notice that the pins only
line up one way.

Then, plug the power transformer into a regular wall outlet. It's
best to plug the transformer into a wall outlet that is continuously

“live,” not one controlled by a wall switch.

You may want to secure the power transformer to the wall outlet.
If so, simply remove the center screw on the wall plate, and then
use it to attach the transformer through the hole provided. Follow

the sketch below.

Finally, plug the monitor power cord into a continuously “live” wall

outlet. (This plug has one regular and one wide blade, and is
designed to fit into the wall outlet only one way. If the blades will
not enter the outlet, try reversing the plug — see Monitor Manual

for details.)

Check the Connections
Before you turn on your computer for the first time, follow these

steps:
8 Check to see that all connections between the computer console

and the monitor are secure.
8 Make sure both the computer and the monitor are "plugged in”

to a live wall outlet.
5 ,

User's Refasoncs Guide

Monitor-Console Connection

SET IT UP

First. select the right location for your computer system. Place
the system on a non-metallic hard-topped surface (such as a
table or desk) in a spot where the sunlight or bright light won't
fall directly on the screen. Also, ventilation is necessary to keep
your system running properly. Be sure air can flow freely
through all the ventilation slots on the bottom, back, and top of
the monitor and console.

Connect Console to Monitor

Connecting your TI1-99/4 Home Computer to the display monitor
requires only two simple steps. You'll use the cable packed with
your monitor . Follow these steps:

1. Connect the single 5-pin plug (called a "DIN" plug) to your
computer console at the point shown.

Connect
o 5 pin "DIN™

Back of Main Console

2. The other end of the cable (with two plugs) connects to your
monitor.

Connect the larger plug to the outlet labelled "video-in" on
the back of your monitor as shown below.

Connect the miniature plug to the outlet labelled “audio- in”
on the back of your monitor as shown.

. : Note:

0 i_ﬁ \- - T he video output of the computer

1s for direct connection to a video
monitor only.

It is not designed for direct or
indirect connection to a

television recerver.

User's Reference Guide

199

Maintenance and Service Information

When returning your Home Computer for repair or replacement, return the Home Computer.
power cord, and any Command Modules which were involved when the difficulty occurred.
For your protection, the Home Computer should be sent insured; Texas Instruments cannot
assume any responsibility for loss of or damage to the Home Computer during shipment. It is
recommended that the Home Computer be shipped in its original container to minimize the
possibility of shipping damage. Otherwise, the Home Computer should be carefully packaged
and adequately protected against shock and rough handling. Send shipments to the
appropriate Texas Instruments Service Facility listed in the warranty. Please include
information on the difficulty experienced with the Home Computer as well as return address
information including name, address, city, state and zip code.

If you cannot determine whether the console or the TI Color Monitor has failed. both units
must be returned.

If the Home Computer is in warranty, it will be repaired or replaced under the terms of the
Limited Warranty. Out-of-warranty units in need of service will be repaired or replaced with
reconditioned units (at TI's option), and service rates in effect at the time of return will be
charged. Because our Service Facility serves the entire United States, it is not feasible to hold
units while providing service estimates. For advance information concerning our flat-rate
service charges, please call our toll-free number listed on page 203.

NOTE: The Color Monitor is too large to be sent via U.S. parcel post (fourth class mail) but
may be sent via first class mail or by common carrier.

EXCHANGE CENTERS

If your Home Computer requires service, instead of returning the unit to a service facility for
repair or replacement, you may elect to exchange the unit for a factory-reconditioned Home
Computer of the same model (or equivalent model specified by TI) by going in person to one of
the exchange centers which have been established across the United States. A handling fee
will be charged by the exchange center for in-warranty exchanges of the Home Computer
console and/or TI Color Monitor. Out-of-warranty exchanges will be charged at the rates in
effect at the time of the exchange. Please refer to the enclosed Exchange Service listing or call
the Consumer Relations Department for exchange fee information and the location of the
nearest exchange center.

202 User's Referencs Guide

Maintenance and Service Information

P

N CASE OF DIFFICULTY

In the event that you have difficulty with your Home Computer, the following instructions may
help you to analyze the problem. You may be able to correct your Home Computer problem
without returning it to a service facility. If the suggested remedies are not successful, contact
the Consumer Relations Department by mail or telephone (refer to IF YOU HAVE
QUESTIONS OR NEED ASSISTANCE later in this section). Please describe in detail the
symptoms of your Home Computer.

_ I one of the following symptoms appears while operating with the optional peripheral(s) or
" accessories, remove the device. If the symptom disappears, refer to the manual for the
peripheral or accessory in question.

SYMPTOM REMEDY
Console indicator light will not come ® Check that transformer power cord is plugged into
on when switch is turned on. the wall.
® Ensure that power cord is connected to the rear of the
console.
No picture. ® Check that power is on, and screen controls are set

for optimum picture. Ensure that cables are properly
connected as specified in the Color Monitor
Operating Guide and Warranty.

No sound. B See that volume control is turned to proper level.
Check connection of cables.

Cassette recorder will not operate ® Ensure that cassette is connected to the 9-pin

when connected to console, but does connector on the rear of the unit. (Not on left side.)

work properly when not connected.

Cassette recorder will not Save or B See pages 17-18.

Load data properly.
properly ® Remember that the cassette motor is controlled by

the computer. Read instructions on pages 14-18
carefully.

Remote Controls will not operate. ® Ensure that unit is connected to the 9-pin connector

on the /eft side of the computer console. (Not on
rear.)

® Remember that only certain software is designed for
use with the Remote Controls.

BASIC program or Equation ® This is a normal reset procedure designed to protect

Calculator is cleared by insertion of a your color screen.

Command Module.

Stray characters appear or other B Static electricity discharges from the user to the

erratic operation occurs or computer console can alter program data stored in the internal

will not respond to keyboard input. memory. To correct this problem turn the console off
and then on.

A Command Module especially designed to verify proper operation of the major functions of
your system is available at your retailer. You can also purchase the Diagnostic module for
use at home.

User's Reference Guide

201

Index

A Careofconsole.......................... 8
Absolutevalue 23 Caretkey 12
Absolute .value function.......... 118 Cassette Interface Cable 9,14,15-16
Accessories. 13-19 Cassette Recorders 14-16
Accessory. outlet.............. 8 CLOSE statement 150
Accm_xr.acy information., 173 INPUT statement. 155
Addition, 12,22,41 Loading programs from 70
AlDkey 11 OPEN statement. 148
Alphabetkeys.......................... 10 PRINT statement 161
APPENDmode 147 Saving programson 68
Arctangent function 118 With file processing. 144
Arithmetic expressions. 40 CHAR subprogram 104-107
Arithmetic operators 40 Charactercodes 163,165
Arrays. 39,134-138 Characterfunction. 126
ASCII charactercodes. 163 Character limit. 22
Assignment statement 73 Charactersets. 102,164
Audiorout L 9 Characters, defining. 104
B CLEARkey................. 11,21,34,55,66
CLEAR subprogram 100
BACKkey ...t 11 CLOSE statement 149-150
Backspacekey..............., 11 CMDKEY .. oo 12
BASIC. 30 Colorcodes. 101,103,166
gEGIngsyl}Jé Color combinations 166
MarycCodes.oooovnnnnn COLOR subprogram 101-102
Blank spaces. 35 Commandmode........................ 47
Branches, program................. 77,78,79 Command Modules 7,8,13,14
BREAK command................... 58-60 Commandscouuiueeno... 47-71
Break key....................... ... 34,50 Commands used as statements 46
Bl’eakPOiﬂtS 58,59,61 Computer trarlsfer
Built-in programs On-GOSUB....................... 143
Equation Calculator 7,19 On-GOTOo 78
TI _BASIC --------------------- 7,19,30 Computer'slimit. 37
Using the programs. 19 Concatenation. 42,43
BYEcommand......................... 52 Constants
c Siring. L
Calculations 21-23 CONTINUEcommand 63
Simple 23-26 Conversiontable. 164
More advanced Correctingerrors 13,32,54.66
CALL CHAR statement 104-107 Cosine function. 119
CALL CLEAR statement 100 Qo IO e
CALL COLOR statement........... 101-102 ' ’)
CALL GCHAR statement. 114 D
CALL HCHAR statement........... 108-110 Data 86,89,91,93,98.151,157
CALL JOYST statement. 116 DATA statement. o1
CALL KEY statement. 118 DEFinestatement 131
CALL SCREEN statement. 103 DELETEcommand Tn
CALL SOUND statement........... 112-113 DELetekey 11,13.21.,34,55,6¢€
CALL VCHAR statement 111 DELETEooption 149
User's Ralerance Guidh

204

If you have questions or need assistance

FOR GENERAL INFORMATION

If you have questions concerning Home Computer repair, or peripheral, accessory or software

purchase, please call our Customer Relations Department at 800-858-4565 (toll free within the
contiguous United States except Texas) or 800-692-4279 within Texas. The operators at these
numbers cannot provide technical assistance.

FOR TECHNICAL ASSISTANCE

For technical questions such as programming, specific Home Computer applications, etc., you

can call 806-741-2663. We regret that this is not a toll-free number, and we cannot accept
collect calls.

As an alternative, you can write to:

Consumer Relations Department
Texas Instruments Incorporated
P.O. Box 53

Lubbock, Texas 79408

Because of the number of suggestions which come to Texas Instruments from many sources
containing both new and old ideas, Texas Instruments will consider such suggestions only if
they are freely given to Texas Instruments. It is the policy of Texas Instruments to refuse to
receive any suggestions in confidence. Therefore, if you wish to share your suggestions with
Texas Instruments, or if you wish us to review any BASIC language program which you have
developed, please include the following statement in your letter:

“All of the information forwarded herewith is presented to Texas Instruments on a
nonconfidential, nonobligatory basis; no relationship, confidential or otherwise, expressed
or implied, is established with Texas Instruments by this presentation. Texas Instruments

may use, copyright, distribute, publish, reproduce, or dispose of the information in any
way without compensation to me."

User's Reference Guide 203

LISTcommand 49
Load data
in Command Modules. 18
mTIBASIC 16,70,151-155
Logarithm function._.... 120
Loop,iterative 81
M
Mantissa.............................. 37
Master selection list. 9,14
Mastertitlescreen 9,14
Mathkeys... 12
Mathematical hierarchy. 41
Monitor-console connection. 199
Multiphcattion. 12,2241
Musical tone frequencies 167
N
Name(vanable) 39
Negatve nmmbers_.___._. 22
NEWcommand 48
NEXTstatement 84
Nosse. 112,113
Nommaldecomalform o4
Notational conventions 3
NUMBERcommand 5355
Numberkeys_.. 10
Numbermode. _...... 53
Number representation _....... 173
Nuambers._.. 879193
Numenicconstants 37
Numericexpressions _......... 40
Numerc faactsoms 117-124
Numencoperatoss 40
Numencvariables 3
o
OlDocommand _ 7”0
ONGOSUBstascmsest 143
ONGOTO statrmest. 78
ONOFFswach 8
Opeamode DT 147
OPENstatesmest e 145
Operatiom keys. 12
Opostors
Arshmetst R LR 40
Relotiomed @ = - - .. 42
Swmg = - ceemanees .43
OPTION BASE sesomsemt ™ ... -- 138
Owder of spesatcss po¥ i

index

-

Difficulty. in case of FORNEXT 100D, .« . oeeaieenn. 81
with cassette recorder. 16,18 FOR-TO-STEP statement 81-83
with Command Module 14 Forwardspacekey 11
withdisplay. 9 Frequency........................ 112,113
with LOAD routine. 18 Functions
with SAVE routine 17 Numeric. 117-124

DiMension statement. 136-137 String. 125-129

DISPLAY filetype 146 User-defined 130-133

DISPLAY statement 98

DISPLAY-typedata................ 152,159 G

Division. 12,22,41 GCHAR subprogram 114

DOWN arrow key 11,13,21,33,55,66 gg?ch)B statement 140-1;}7

Duration............................. 112 statement

Greaterthan........................... 12

E Grid................. 109,114

Earphoneoutlet 8

EDITcommand..................... 66-67 H

Edltlﬂg 28,32,54,66'67 HCHAR-subprogram 108-110

Endoffile. 154-155 ngademmal R R 105

End-of-file function. 156 Hierarchy, mathematical 41

ENDstatement 75 I

E:;Ei;ey e 1S3 féf’g‘f IF-THEN-ELSE statement. 79-80

Equation Calculator 719.20-28 Infixoperators 40
Dlsplayformat,'20 iNPUTmode 147
Selecting 20 Hr:ﬁ;tj-%utput statements............... 85-98

“Equation memory” area 20.23 statement. 86-88,151-155

Equations ’23 INSert key R 11,13,21,33,55,66

ERASE key. ii31s4sser mteESrfmton. ... 120

etype.

E’m’ MESSAZeS. 17,18,24,28,168-172 INTERNAL-type data. 152,157-158

xecution, program
Beginning. 51 J
Continuing. 63 JOYST subprogram 116
Interrupting. 34,58
Terminating. 75,76 K
Tracing 64 Keyboard 8,10

Exponent 26,27,37 Keyboardoverlay....................... 11

Exponential function 119 KEY subprogram.................. 115

Exponentiation. 12,26,27,41 Keywords. 28

Expressions 40,42,43 L

F Leaving TIBASIC................... 33,52

Filedlifeccooviiiiiii.. 147 LEFT arrowkey 11,21,33,55,67

FileBameo e 145 Length function 127

Filenumber 145,149,151,157,162 Lessthan 12

File ZAGON. o o 146 LET statement. 73

File g g e 144-163 Lfmlts, computer 37

FUeAYPE . . . oo 146 L?ne numbering, automatic 53

FIXEDrecordtype 147 Linenumbers................. 35,36

User’s Reference Guide

205

Three-Month Limited Warranty

THIS TEXAS INSTRUMENTS HOME COMPUTER CONSOLE WARRANTY

EXTENDS TO THE ORIGINAL CONSUMER PURCHASER OF THE
CONSOLE.

WARRANTY DURATION

This Home C_omputer console is warranted for a period of three (3) months from the
date of the original purchase by the consumer.

WARRANTY COVERAGE

This Home Computer console is warranted against defective materials or
workmanship. THIS WARRANTY IS VOID IF THE CONSOLE HAS BEEN
DAMAGED BY ACCIDENT, UNREASONABLE USE, NEGLECT, IMPROPER
SERVICE OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN
MATERIALS OR WORKMANSHIP.

WARRANTY DISCLAIMERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO THE ABOVE THREE-MONTH PERIOD. TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE
HOME COMPUTER CONSOLE OR OTHER INCIDENTAL OR
CONSEQUENTIAL COSTS, EXPENSES, OR DAMAGES INCURRED BY THE
CONSUMER OR ANY OTHER USER.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages. so the above limitations or exclusions may not apply to you.

LEGAL REMEDIES

This warranty gives you specific legal nghts, and you may also have other rights that
vary from state to state.

WARRANTY PERFORMANCE

Please first contact the retailer from whom you purchased the console and determine
the exchange policies of the retailer.

During the above three-month warranty period, your TI Home Computer console will
be repaired or replaced with a new or reconditioned console of the same or equivalent

model (at TI's option) when the console is returned either in person or by prepaid
shipment to a Texas Instruments Service Facility listed below.

Texas Instruments strongly recommends that you insure the console for value, prior to

shipment.

The repaired or replacement console will be warranted for three months from date of
repair or replacement. Other than the cost of shipping the unit to Texas Instruments or
postage. no charge will be made for the repair or replacement of in-warranty consoles.

-

H

index
b
RESEQUENCE command. 56-57 STOP statement.coovvneenouenn- 76
Reservedwords 24-25,44 String CONStants 38
Reset. 14 String eXpressions«.... 43
RESTORE statement 92,162 String functions 125-129
RETURN statement 142 String-number function 129
RIGHT arrowkey............ 11,21,33,55,67 String segment function. 128
RUNcommand 0o, 51 String variables 39
Running a BASIC program............... 51 Strings. 38,39,42,43,79,87,91,93
8 Subprograms 99-116
SAVE command. 68-69 gu:rou'tmes 139 };.:37
Save data ubscript. 1222 >
in Command Modules. . . . 16-18 Subtraction. 22,
in TIBASIC........... 16,68-69,157-161 T
Scientific notation 27,3794 TABfunction 96
Screenblanks. 9 Tangent function. 124
SCREEN subprogram. 103 TIBASIC....................... 7,9,19,30
Seed 121 g 28,112,113
SEQUENTIAL file-organization 146 TRACEcommand...................... 64
SHIFT function 10 Transformer and power cord
SHIFT keys CONMECHIONttt e eeneaeennnn 199
<(lessthan)....................... 12 Trigonometric functions 26,27,118,119,123,124
> (greaterthan) 12
=(equals)cooii . 12 U
A (exponentiation) 12 UNBREAK command................ 61-62
{ (DOWN) 11,21,23,33,55,66 Undefined variables 26
< (LEFT) 11,21,23,33,55,67 Underflow............ 28
- (RIGHT)........... 11,21,23,33,55,67 UNTRACE command................... 65
t@UP) ... 11,21,23,33,55,66 UParrowkey................ 11,21,33,55,66
AAID)............. 11 UPDATEmode 147
C(CLEAR).............. 11,21,34,55,66 User-defined functions 130
FDEL)............. 11,13,21,34,55,66
G(NS) ...oonnn.. 11,13,21,33,55,66 v
QQUIT) 11.33 Value function. 129
RREDO) ... 11 "Variable memory”"box 20
T(ERASE) 11,21,34,55,67 VARIABLE record-type. 147
VICMD) ... 11 Variables............ 20,23,24-26,39,73,87,89
WBEGIN). ... 11 VCHAR subprogram 111
ZBACK) 11 Video-out. 9
Signfunction 123 Volume 112
S@gnum fupction 123 W-X-Y-2Z
Sinefunction. 123 Wired Remote Controll
SOUND subprogram............... 112-113 “Work . OMIroliers 9,116
Space bar 12,13.34 orkarea 20
Spacekey....... ... 11,34
Special functionkeys............ 10,20-21,33
Split console keyboard. 165
- Square root function. 124
Statement used ascommands 45
User's Reference Guide

207

TEXAS INSTRUMENTS CONSUMER SERVICE FACILITIES

U.S. Residents Canadian Residents

Texas Instruments Service Facility Texas Instruments Service Facility

2303 North University 41 Shelley Road

Lubbock, Texas 79415 Richmond Hill, Ontario, Canada
L4C5G4

Consumers in California and Oregon may contact the following Texas Instruments
office for additional assistance or information.

Texas Instruments Consumer Service Texas Instruments Consumer Service
831 South Douglas Street 10700 Southwest Beaverton Highway
El Segundo, California 90245 Park Plaza West
(213) 973-1803 Beaverton, Oregon 97005

(503) 643-6758

IMPORTANT NOTICE REGARDING PROGRAMS AND BOOK MATERIALS

The following should be read and understood before purchasing and/or using TI's
Home Computer.

T1 does not warrant that the programs contained in this computer and accompanying
book materials will meet the specific requirements of the consumer. or that the
programs and book materials will be free from error. The consumer assumes complete
responsibility for any decision made or actions taken based on information obtained
using these programs and book materials. Any statements made concerning the utility
of TI's programs and book materials are not to be construed as express or implied
warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESSED
OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, REGARDING THESE PROGRAMS OR BOOK
MATERIALS OR ANY PROGRAMS DERIVED THEREFROM AND MAKES
SUCH MATERIALS AVAILABLE SOLELY ON AN “AS IS” BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE
FOR SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE PURCHASE
OR USE OF THESE PROGRAMS OR BOOK MATERIALS, AND THE SOLE
AND EXCLUSIVE LIABILITY OF TEXAS INSTRUMENTS, REGARDLESS
OF THE FORM OF ACTION, SHALL NOT EXCEED THE PURCHASE PRICE
OF THIS HOME COMPUTER. MOREOVER, TEXAS INSTRUMENTS SHALL
NOT BE LIABLE FOR ANY CLAIM OF ANY KIND WHATSOEVER
AGAINST THE USER OF THESE PROGRAMS OR BOOK MATERIALS BY
ANY OTHER PARTY.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above limitations or exclusions may not apply to you.

User's Refereace Guide

779

TEXAS INSTRUMENTS

INCORPORATED

Printed in U.S A

